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Important Remarks

* The logical connectivity between proposed
methods.

« Motivations and contributions.

» Statistical properties of datasets and their
relation with the results.

* Granularity of labeling.
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Problem Definition (Informal)

* Assigning multiple labels to remotely sensed
Images iIs made possible by setting up
relationships between specific image
features and individual labels.

* If multiple mapped |mage features are found
in a given ingE @& ultiple labels are
assigned to | = ge.

Trees, pavement, building, ...
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Problem Definition (Formal)

 Assume that D is the matrix of training data. Then, a
machine learning method can be defined as follows:

F:D=>Y
« Where Yis a multihot encoded array of binary

vectors. For each relevant label of each image,
there is a 1 in the respected column of the label in
Y.
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Datasets: DFC15 Multi-Label

Table 2.1: The distribution of labels in each class for the DFC15 Multi-Label.

Class No. Class Name Total

1 Impervious 3133
2 Water 998
3 Clutter 1891
4 Vegetation 1086
5 Building 1001
6 Tree 258
7 Boat 270
8 Car 705
- All 3342
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Datasets: AID and UCM Multi-Label Datasets

Table 2.2: The distribution of labels in each class for the UCM Multi-Label and AID
Multi-Label datasets.

Class No. Class Name Total

UCM Multi-Label AID Multi-Label

1 bare soil 718 1475
2 airplane 100 99
3 building 691 2161
4 car 886 2026
5 chaparral 115 112
6 court 105 344
7 dock 100 271
8 field 104 214
9 grass 975 2295
10 mobile-home 102 2
11 pavement 1300 2328
12 sand 294 259
13 sea 100 221
14 ship 102 284
15 tank 100 108
16 tree 1009 2406
17 water 203 852
- All 2100 3000
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Datasets: Ankara Dataset

Table 2.3: The image distribution across labels for Ankara Dataset.

Class No. Class Name Total | Class No. Class Name Total
1 Grass Covered Soil 215 | 16 Blue Roofing 23
2 Bare Soil 216 | 17 Yellow Roofing 13
3 Arid Soil 10 18 Membrane Roofing 57
4 Rocky 31 19 Concrete Roofing 55
3 Tree 174 | 20 White Tent 6

6 Reeds 5 21 Unpaved Road 106
7 Crop (Type-A) 47 22 Asphalt Pavement 183
8 Crop (Type-B) 38 23 Highway Pavement 12
9 Crop (Type-C) 2 24 Grass (Type-A) 215
10 Crop (Type-D) 55 25 Grass (Type-B) 12
11 Crop (Type-E) 4 26 Grass (Type-C) 25
12 Red Roofing 131 | 27 Lake 11
13 Metal Roofing 130 | 28 Pool 23
14 White Roofing 122 | 29 Cloud 6
15 Green Roofing 41 - All 216
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Datasets: Summary
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Datasets: Summary

Table 3.1: Remotely sensed multi-label image classification datasets.

W AID Multi-Label UCM Multi-Label DFC15 Multi-Label Ankara Dataset
Image Size 600 x 600 256 % 256 600 X 600 63 x 63
# of Images 3000 2100 3342 216
# of Distinct Labels 17 17 8 29
DLS 297 202 65 127
PDLS 0.0990 0.0962 0.0194 0.5880
LC 5.1523 3.3348 2.7953 9.1204
LD 03031 0.1962 0.3494 0.3145
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Our Proposed Solutions: ARSI-TL

« Motivation

- Label relation information in small and
iImbalanced datasets may not be as effective
as with larger datasets.

- To test this hypothesis, a straightforward
CNN-based model is developed.
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Our Proposed Solutions: ARSI-TL (cont’'d)

* There are two subnetworks in the proposed model:
- A pre-trained VGG16 for image feature extraction (as shown in

blue box).
- A fully-connected dense layer form feature classification (as
shown in purple box).non-Trainable Trainabl
S||c||2| |3||3||E [3]S|[S||E [S[S|[S||E ooogiﬂ 8 grass
NX2 S 5 o

VGG16

Feature Extraction with Transfer Learning Multi-Label Prediction
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Our Proposed Solutions: ARSI-TL (cont’d)

Table 3.2: Comparison of the proposed model on the AID Multi-Label dataset.

Method Name Results of Published Methods Results of Proposed Method Testing Method
P R F, F, P R F F
GRN-SNDL-BCE [7] ‘ 92.79 91.08 90.95 90.82|90.18+0.23 88.89+0.19 8823+0.16 8831+0.16 | Random Split!
Zhuetal. [11] 89.72 8841 8749 - .5
87.62+093 B88.46+065 86.46+0.70 87.12+0.66 | Random Split-
AL-RN-ResNet [9] | 91.00 88.95 88.72 88.54 andom Spi

L' 70% train, 20% test, 10% validation
2 80% train, 10% test, 10% validation

Table 3.3: Comparison of the proposed model on the UCM Multi-Label dataset.

Method Name Results of Published Methods Results of Proposed Method Testing Method
P R Fy F, P R F, Fs

GRN-SNDL-BCE [7] | 91.98 92.83 91.31 91.92 | 88.22+0.62 88.85+0.69 87.22+048 87.84+0.57 | Random Split!

Zhu et al. [11] 91.75 91.65 90.62 -
AL-RN-ResNet [9] 8881 87.07 86.76 86.67 | o0 57,080 89.36+0.69 87.84+0.64 8844064 | Random Split
CA-ResNet-BiLSTM [6] | 77.94 89.02 81.74 85.27
LR-ResNet [10] 87.10 8580 8530 -

' 709% train, 20% test, 10% validation
2 809% train, 10% test, 10% validation
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Our Proposed Solutions: ARSI-TL (cont’d)
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Table 3.4: Comparison of the proposed model on DFC15 Multi-label Dataset.

Results of Proposed Method
P R Fy Fy

Testing Method

Method Name Results of Published Methods
P R Fy F

GRN-SNDL-BCE [7] ‘ 96.53 9595 9580 95.78 | 0537 +0.18 93.07+0.27 9342+0.24 93.04+0.26 | Random Split!

CA-ResNet-BiLSTM [6] ‘ 9193 79.12 83.65 80.61 | 0583034 9353x046 9397036 9355042 | Random Split*

1 70% train, 20% test, 10% validation
2 80% train, 10% test, 10% validation

Table 3.5: Comparison of the proposed model on Ankara Dataset.

Method Name | Results of Published Methods Results of Proposed Method Testing Method
P R F > P R Fy F
Zhuetal. [11] ‘ 8122 82.12 76.60 - ‘ 88.30+1.68 82.61+198 8419+1.58 8294+ 1.58 | Random Split'

I'80% train, 10% test, 10% validation
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Our Proposed Solutions: ARSI-TL (cont’d)

Dataset Name #Method ARSI-TL PDLS
S
Ankara Dataset 2 1 0.588
0
DFC15 Multi-Label 3 2 0.019
Dataset 4
AID Mu|ti-|_§;bgljj[m;ggmgﬂ | 0.099
- 0
5|
UCM Multi-kabel 0.096
Dataset - 2
8 05
0
0{5\ &QJ &«\{0‘0@ \§\\, {50@ 36\,50@
‘é&'&% d@@ ?}OQ 00®®
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Our Proposed Solutions: SS-MLA

« Motivation

- Learning from small and imbalanced datasets
might be a challenging task for advanced models.

- It is hard to find large and labeled datasets.

- An efficient method is needed that both learns
from small labeled datasets and able to extend
its knowledge from large unlabeled datasets.

03/02/2021 16/26



Our Proposed Solutions: SS-MLA

Semi-Supervised Multi-Label Annotizer (SS-MLA):

* Vector Quantized Temporal Associative Memory
(VQTAM)

« VQTAM & SOM unsupervised

« SS-MLA:

- target labels supervised, clustering unsupervised in the
learning process.

- semi-supervised method.
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Our Proposed Solutions: SS-MLA (cont’'d)

Multi-hot Encoded BoW
Predictions Vector

A\ J
Y
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Our Proposed Solutions: SS-MLA (cont’d)

Table 4.2: Comparison of SS-MLA with literature on AID Multi-label Dataset.

Method Name Results of Published Methods Results of SS-MLA Testing Method
P R F Fs P R F, F
GRN-SNDL-BCE [7] | 92.79 91.08 90.95 90.82 : . 5
91.36 £ 048 9048 £+0.63 89.70+0.16 89.87 +042 | Random Split-
Proposed Model! 90.18 88.89 8823 883l * * * * ancom Spi
Zhu et al. [11] 89.72 88.41 87.49 -

91.21+0.61 91.02+0.70 89.88+0.38 90.26 +0.53 | Random Split*

AL-RN-ResNet [9] 91.00 88.95 88.72 B88.54

! The model proposed in Chapter 3.
2 70% train, 20% test, 10% validation.
3 80% train, 10% test, 10% validation.
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Our Proposed Solutions: SS-MLA (cont’d)

Table 4.3: Comparison of SS-MLA with literature on UCM Multi-label Dataset.

Method Name Results of Published Methods Results of SS-MLA Testing Method
P R Fi F> P R Fi Fa

GRN-SNDL-BCE [7] ‘ 91.98 92.83 91.31 91.92 | 89.23+0.78 92.15+0.87 89.55+0.56 90.78 +0.68 | Random Split®

Proposed Model' 88.57 89.36 87.84 88.44

Zhu et al. [11] 91.75 91.65 90.62 -

AL-RN-ResNet [9] 88.81 87.07 86.76 86.67 | 89.37+0.86 92.23+0.87 89.60+0.51 90.83 +0.64 | Random Split*
CA-ResNet-BiLSTM [6] | 77.94 89.02 81.47 85.27

LR-ResNet [10] §7.10 85.80 85.30 -

! The model proposed in Chapter 3.
2 70% train, 20% test, 10% validation
3 80% train, 10% test, 10% validation

Table 4.4: Comparison of SS-MLA with literature on DFC15 Multi-label Dataset.

Method Name Results of Published Methods Results of S5-MLA

P R F, F> P R Fy Fa
GRN-SNDL-BCE [7] ‘ 96.53 9595 9580 95.78 ‘ 9570 £0.39 9531+033 9492+025 9501 +0.27 | Random Split®

Testing Method

95.83 93.53 9397 9355
91.93 79.12 83.65 80.61

Proposed Model'
CA-ResNet-BiLSTM [6]

9634 +£0.29 95.18+0.56 9520029 9506045 ‘ Random Split*

! The model proposed in Chapter 3.
2 70% train, 20% test, 10% validation
3 80% train, 10% test, 10% validation
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Our Proposed Solutions: SS-MLA (cont’d)

Table 4.5: Comparison of SS-MLA with literature on Ankara Dataset.

Method Name Results of Published Methods Results of SS-MLA Testing Method
P R F| F2 P R Fl FZ
. ; 1
Proposed Model'] 88.30 - 82.61 - 84.19 82941 o5 3, 181 82024175 8239+1.09 8230+ 131 | Random Split

Zhuetal. [11]

81.22 82.12 76.60 -

! The model proposed in Chapter 3.
2 80% train, 10% test, 10% validation
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Our Proposed Solutions: SS-MLA (cont’d)

Dataset Name #Method SS- PDLS
S MLA
Ankara Dataset 3 2 0.588
0

DFC15 Multi-Label 4 2 0.019
Dataset 4
AID Multi-Eabel Dataseanidr ssma 0.099

 mmm  auBDLSofDa 0
UCM MuIt’.‘iiﬁL 0.096
Dataset . 2

0

06@_6 §>’§® \\\}},\’b\(}@ \g&\,\fbo@
v‘@ QQC’\(?@ VQ@ \@&

03/02/2021 22/26



Final Thoughts

« Sophisticated methods may not perform as effective as simpler
methods in small, non-diverse, and imbalanced datasets.

 Showed that semi-supervised methods such as SS-MLA can
generalize better in small, non-diverse, and imbalancced datasets.

« Several datasets are collected and get together to be able to make
a fair comparison and all of the proposed methods are tested and
evaluated on multiple datasets.

* To overcome the problem shown in the first bullet, a novel semi-
supervised method is introduced to the relevant literature.
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Future Work

* This study fouces on multi-label classification of remotely
sensed images.

« We will expand the scope of this study to cover the multi-
label classification of images other than the remotely
sensed ones.

« We will also add the attention mechanism to the expanded
version of the proposed method. We expect that the
attention mechanism will increase the success of the
proposed method.
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