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ABSTRACT

The increasing use of drones across various sectors demands optimized deployment strategies under diverse
constraints. This paper tackles the Multiple Capacitated Mobile Depot Vehicles Routing Problem (mCMoD-
VRP), a challenging variant of the Vehicle Routing Problem (VRP) where multiple drones with limited
flight range operate from a mobile depot. The goal is to maximize target coverage while considering flight
endurance, depot mobility, and drone multiplicity. We introduce a novel evolutionary algorithm, Evolutionary
Optimization for Synchronized Routing Problem (EOSRP), which constructs synchronized routes for the drone
swarm, accounting for all constraints. EOSRP distinguishes itself with specialized genetic operators, specifically
designed to efficiently handle the constraints of mCMoD-VRP, enhancing both exploration and exploitation
of the search space. EOSRP also facilitates collaborative planning among drones, enabling them to share
targets and optimize routes collectively, resulting in more efficient use of flight range capacity. Comprehensive
simulations on benchmark problems demonstrate that EOSRP consistently outperforms a serialized version of
our previous single-drone algorithm, Genetic Algorithm for Capacitated Mobile Depot (GA-CMoD), achieving an
average of 8.7% higher target coverage and 7.28% more efficient use of flight range capacity. EOSRP’s ability
to generate synchronized solutions through collaborative planning leads to significantly improved mission

efficiency.

1. Introduction

The rising accessibility of drones, combined with their low-risk,
cost-effective, and operationally flexible nature, presents a wealth of
opportunities for their deployment in diverse fields. Applications range
from military intelligence and surveillance to commercial cargo de-
livery, agricultural data collection, and disaster relief. This expansion
is driven by advancements in supporting technologies like artificial
intelligence and advanced sensors, control, and communication ca-
pabilities. However, realizing the full potential of drone operations
requires addressing the inherent challenges of optimizing their usage
under various constraints.

A fundamental challenge in many drone applications is the need
to visit a set of geographically dispersed locations for data collection
or material delivery. This task can be addressed by a single drone
launched from a fixed depot, but scenarios involving multiple drones
and rapid deployment often necessitate more complex planning. Fur-
thermore, geographical constraints, such as deliveries in remote areas
or archipelagos beyond the range of fixed depots, introduce additional
complexities. In such cases, the planning must also involve determining
the temporary deployment location for a mobile depot, which could be
a carrier ship or a truck.
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This paper focuses on a particularly challenging scenario where
the depot itself is in motion, requiring dynamic task planning for
the drones. This scenario, known as the Multiple Capacitated Mobile
Depot Vehicles Routing Problem (mCMoD-VRP), presents a significant
research gap in the field of drone routing. The mCMoD-VRP problem
involves optimizing the routes of multiple drones with limited flight
range, operating from a mobile depot, to maximize the number of
targets visited. This problem is a generalization of the classic Vehicle
Routing Problem (VRP), incorporating additional constraints related to
drone capacity, depot mobility, and the need for synchronized routing.

The mCMoD-VRP problem presents several key challenges:

» Determining Takeoff and Landing Points: Drones must be
launched and retrieved at appropriate points along the mobile
depot’s route, considering both the drone’s range and the depot’s
trajectory.

+ Assigning Targets to Drones: Each drone must be assigned a subset
of targets that can be visited within its flight range. Assign subsets
of targets per each available drone that can be visited within the
range constraint,
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+ Synchronizing Drone Routes: The routes of multiple drones must
be coordinated to ensure efficient collaboration and avoid unnec-
essary overlaps.

+ Returning to the Mobile Depot: Drones must be able to return to
the current location of the mobile depot within their flight range,
despite the depot’s continuous movement.

To address these challenges, this paper proposes a novel evolu-
tionary algorithm, Evolutionary Optimization for Synchronized Rout-
ing Problem (EOSRP). EOSRP is a significant departure from existing
approaches by introducing a unique combination of features:

+ Synchronized Routing: EOSRP constructs synchronized routes for
the drone swarm, considering the dynamic movement of the
mobile depot and the limited flight range of each drone.
Collaborative Planning: EOSRP incorporates a collaborative plan-
ning mechanism that allows drones to share targets and optimize
their routes collectively, leading to more efficient use of flight
range capacity.

Hybrid Genetic and Memetic Algorithms: EOSRP combines ge-
netic algorithms with local search heuristics to effectively ex-
plore and exploit the search space, ensuring robust and efficient
solutions.

We demonstrate the effectiveness of EOSRP through comprehensive
simulations on benchmark problems, comparing its performance to a
serialized version of our previous single-drone algorithm, GA-CMoD.
The results show that EOSRP consistently outperforms the baseline
algorithm, achieving significantly improved mission efficiency.

We present the proposed algorithm with the following structure:
Section 2 provides an overview of related works. Section 3 defines the
research problem. Section 4 describes the proposed algorithm and the
benchmark algorithm. Section 5 provides the simulation results and
finally Section 6 concludes the study.

2. Literature review

The research on drone routing problems, particularly those involv-
ing mobile depots and multiple drones, has grown significantly in
recent years. A comprehensive overview of various Vehicle Routing
Problem (VRP) variants, methods, and applications can be found in the
book by Toth and Vigo (Dell Amico et al., 2020). This work provides a
valuable foundation for understanding the complexities of VRP and its
numerous extensions.

2.1. Drone delivery from trucks: A focus on constraints, objectives, and
algorithms

A significant portion of the literature focuses on two-echelon routing
problems, where a ground vehicle (truck) acts as a mobile depot for
drones. This “truck-and-drone” tandem model has gained popularity
due to its potential for efficient last-mile delivery and its ability to
overcome limitations of traditional delivery methods.

Several studies have investigated specific variants of the truck-and-
drone tandem model, exploring various constraints, objectives, and
algorithms.

» Constraints: Common constraints in these models include:

- Drone Flight Range: Drones have limited flight range, re-
stricting the distance they can travel from the truck.

- Drone Payload Capacity: Drones have limited payload ca-
pacity, affecting the number and weight of packages they
can carry.

— Truck Route: The truck’s route is often predetermined, in-
fluencing the launch and retrieval points for the drones.
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- Time Windows: Customers may have time windows for
delivery, adding complexity to the scheduling of drone op-
erations.

+ Objectives: Typical objectives in truck-and-drone routing prob-
lems include:

— Minimizing Total Travel Time: Reducing the overall time
required to complete deliveries.

— Minimizing Total Cost: Optimizing the balance between
truck and drone operations to minimize costs.

— Maximizing Target Coverage: Ensuring that as many deliv-
ery points as possible are reached within the constraints.

+ Algorithms: A variety of algorithms have been proposed to solve
truck-and-drone routing problems, including:

— Genetic Algorithms: These algorithms use evolutionary prin-
ciples to search for optimal solutions.

— Heuristics: These algorithms provide approximate solutions
that are often computationally efficient.

- Dynamic Programming: This approach breaks down the
problem into smaller subproblems that are solved itera-
tively.

2.2. Challenges of continuous depot movement

This paper focuses on a particularly challenging scenario where
the depot itself is in motion, requiring dynamic task planning for
the drones. This scenario, known as the Multiple Capacitated Mobile
Depot Vehicles Routing Problem (mCMoD-VRP), presents a significant
research gap in the field of drone routing. The mCMoD-VRP problem
involves optimizing the routes of multiple drones with limited flight
range, operating from a mobile depot, to maximize the number of
targets visited. This problem is a generalization of the classic Vehicle
Routing Problem (VRP), incorporating additional constraints related
to drone capacity, depot mobility, and the need for synchronized
routing. In essence, mCMoD-VRP extends the VRP by considering the
dynamic movement of the depot and the unique characteristics of drone
operations, such as limited flight range and the need for coordinated
routing.

The continuous movement of the depot introduces several unique
challenges such as:

» Dynamic Takeoff and Landing Points: Drones must be launched
and retrieved at points that are constantly changing along the
depot’s route. This requires real-time adjustments to the drone’s
trajectory and flight plan.

Synchronization with Depot Movement: The drone’s routes must
be synchronized with the depot’s movement to ensure that the
drone can rejoin the depot within its flight range. This adds
complexity to the routing and scheduling process.

Increased Computational Complexity: The dynamic nature of the
problem requires more sophisticated algorithms to handle the
continuous changes in the depot’s location and the drone’s flight
paths.

2.3. Special properties of drone-only target visits

In contrast to scenarios where both the host station and drones can
visit targets, this paper considers a situation where only drones visit
targets. This scenario introduces specific properties:

+ Increased Drone Responsibility: Drones become solely responsible
for visiting all targets, requiring careful planning to ensure that
each target is covered within the drone’s flight range.

» Optimized Drone Utilization: The focus on drone-only target visits
allows for more efficient utilization of drone resources, as the host
station does not need to be involved in direct target visits.
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» Simplified Host Station Operations: The host station’s role is
simplified, focusing primarily on providing ground services for
the drones, such as reloading, maintenance, and regeneration.

2.4. Relevant studies

Numerous studies have investigated specific variants of the truck-
and-drone tandem model. Murray and Chu (2015) introduce a shortest
makespan problem where a truck and drone serve customers, with
the truck launching and retrieving the drone at customer nodes. Ha
et al. (2018) challenge the algorithm of Murray and Chu on the same
problem model, aiming to minimize total operational costs. de Freitas
and Penna (2020) consider the same problem with a different solu-
tion approach. Wang et al. (2020) investigate a similar variant where
the drone can visit multiple customers. Baik and Valenzuela (2021)
implement this problem type for optimal inspection of wind farms, min-
imizing total mission time. Yurek and Ozmutlu (2018) and Dell Amico
et al. (2021) tackle the same problem with the objective of mission
completion time.

Murray and Raj (2020) extend this problem type by introduc-
ing multiple serially operating drones with heterogeneous capacities.
Moshref-Javadi et al. (2020) consider multiple capacitated drones that
can be launched from the truck multiple times at customer locations,
with the truck collecting them only at their dispatch points. Karak
and Abdelghany (2019), consider a similar problem with different
constraints, where drones can return to any predefined rendezvous
locations. Dell Amico et al. (2020) consider a parallel routing model
where a truck and a set of homogeneous drones depart from the depot
to complete a delivery task. Luo et al. (2017) investigate a model where
the ground vehicle travels on a road network and a drone it hosts visits
off-road targets. Peng et al. (2019) study a similar model with a swarm
of drones hosted by a truck for parcel delivery.

Sacramento et al. (2019) tackle a variant where capacitated trucks
equipped with drones service customers with the cost minimization
objective. Das et al. (2020) consider multiple trucks each equipped with
a drone cooperating in a delivery mission, minimizing travel cost and
maximizing time window matching. Poikonen et al. (2017) examine a
model where the goal is to complete delivery with minimum time using
multiple trucks each hosting multiple drones. Schermer et al. (2019b,a)
study variants where drones can interact with the truck at customer
nodes and discrete points along the truck’s route. Poikonen and Golden
(2019) consider a mothership and drone cooperation scenario where
the drone can visit multiple targets. Kitjacharoenchai et al. (2019,
2020) consider scenarios with multiple trucks and multiple drones,
where drones can use any truck as a host. Wang and Sheu (2019)
consider a routing problem of drones cooperating with a network of
trucks for parcel delivery.

Nguyen et al. (2021) and Poikonen and Golden (2020) consider
scenarios where trucks and drones, both dispatched from a central
depot, cooperate in parcel delivery, optimizing transportation cost and
minimizing mission completion time. Jeong et al. (2019) extend this
model by including energy consumption based on parcel weight and no-
fly zone constraints. Luo et al. (2021) examine a cooperative scenario
of a truck and multiple drones where drones can visit multiple targets
and the truck can launch and recollect multiple drones at a customer
location. Chiang et al. (2019) consider multiple trucks and drones in a
tandem delivery operation, minimizing total carbon emission.

Agatz, Bouman, and Schmidt in Agatz et al. (2018) and Bouman
et al. (2018) compare heuristic-based truck and drone solutions with
truck-only solutions and propose a dynamic programming approach for
TSP with drone problems. Wang et al. (2019) study a hybrid model
where trucks, truck-carried drones, and independent drones collaborate
for delivery, optimizing time and distance. bin Othman et al. (2017)
consider a single drone with one customer delivery capacity that can
meet the truck at rendezvous points. Liu et al. (2019) investigate a
scenario where the drone can visit multiple targets and meet the ground
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vehicle at a different location. Chang and Lee (2018) consider a model
where customers are bundled in groups and a truck parks at cluster
centers, launching multiple drones for delivery. Carlsson and Song
(2018) consider a model where the truck moves along a route to enable
the drone it hosts to visit one customer at a time. Marinelli et al. (2018)
consider a scenario where the drone can be launched and retrieved
by the truck en route. Chen et al. (2019) consider a scenario where a
ground vehicle hosts a swarm of two air vehicles that visit one target at
a time. Our previous work (Savuran and Karakaya, 2015b) introduced
the Capacitated, Mobile Depot - Vehicle Routing Problem (CMoD-VRP),
where a moving host station hosted a single drone operating on a set of
dispersed targets. We proposed a novel genetic algorithm, GA-CMoD,
which is adapted for drone multiplicity and used as a comparison
algorithm in this study.

The problem structure presented in this paper differs from the
studies discussed above in one or more of the following factors: drone
multiplicity, n-tuple visiting capacity per flight of a drone, liberty of the
drone and the host station meeting at random points along the route,
and the problem objective being the visit of the maximum number
of targets possible under capacity constraint. These factors and our
contribution to the literature are discussed in detail in Section 3.

3. Problem definition

As discussed in Section 2, there are various classification approaches
based on decision problems such as depot location, capacity planning,
job scheduling, coupling and fleet sizing of trucks or drones. The
problem structured in this paper can be classified by the individual
functions of drone and host station assets. In most of the studies, host
station and drones both are capable of visiting targets, while the host
station can also act as the mobile platform for the drones, whereas
drones are employed as extending apparatus to reach out to the targets
for feasibility or practicality prospects. In our model, only the drones
visit targets and the host station has no such responsibility whose
function solely is to provide ground services for the drones such as
reloading, maintenance and regeneration while on the move. Another
point is, due to the consideration of scenarios where small drones are
employed with parcel delivery, most literature assumes drones in three-
tuple operations (visiting one customer at a flight). Our model considers
drones that have the characteristics of endurance and regeneration time
rather akin to that of advanced UAVs, which enables them to visit
multiple targets at one flight, and in return limits its availability to only
one flight during a mission. These distinct decision parameters define
the contribution of our problem model to the literature.

In this paper, we consider an advanced variant of CMoD-VRP (Savu-
ran and Karakaya, 2015b): Multiple, Capacitated, Mobile Depot - Ve-
hicles Routing Problem (mCMoD-VRP), which is a VRP constrained by
multiplicity, flight range, and depot mobility constraints. mCMoD-VRP
has the following problem properties:

+ Host station is mobile on a given route (for simplicity, in the use
case scenarios we assume that the route is fixed on a constant
heading and at a constant speed),

» Multiple drones are available (the replenishment need of the
drones is assumed to allow them to be tasked only once during a
mission),

+ Drones have finite flight range (drones are assumed to operate at
a constant speed and the time spent for their vertical moves and
loiter phase over targets is assumed to be negligible),

» Maximum number of targets must be visited.

In essence, the synthesis of these constraints relates mCMoD-VRP
to three different combinatorial optimization problems defined in the
literature: vehicle routing problem conjoined with job shop scheduling
and knapsack problems.

Vehicle Routing Problem (VRP) is a generalization of the well-
known Traveling Salesperson Problem (TSP) which was first defined
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Fig. 2. Sample encoding of a three drone problem into a chromosome.

formally by Karl Menger in 1930s (Menger, 1932) and aims to complete
a Hamiltonian Circuit (Hamilton, 1856) for a set of vertices with the
shortest route. The VRP was initially proposed by Dantzig and Ramser
in 1959 (Dantzig and Ramser, 1959) addressing the routing optimiza-
tion for a fleet of gasoline trucks, and attracted an enormous level of
research interest ever since then owing to its facets in miscellaneous
practical fields based on various constraints. Designing sequential vis-
iting lists for drones of targets assigned to them in mCMoDVRP is
therefore a VRP.

Job shop scheduling problem is known to be coined by Graham
(1966) in 1966 and is another problem where the objective is to sched-
ule n jobs on m processing elements in a way to minimize makespan.
In the proposed solution, Evolutionary Optimization for Synchronized
Routing Problem (EOSRP), processing elements are mapped to drones
and jobs are mapped to the targets they are scheduled to visit, there-
fore determining the distribution of targets falls under this problem
category.

Knapsack problem was initially studied by Dantzig (1931) in 1897
and models the decision making process in selection of a subset from
a set of objects of variable weight and value, with the objective of
maximizing the total value of selected objects while remaining within
the total weight limit. Since drones have finite range and therefore
must select the most optimal subset of weighted (in terms of travel
cost) targets in EOSRP, knapsack problem is applied here. Even though
virtually all targets have equal value, their relative position to other
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targets and the moving host station has direct effect on total value of
the drone’s tour.

4. Methodology

This section explains our methodology in handling the problem by
describing the solution we propose and the competing algorithm we
devised for the purpose of comparative evaluation.

4.1. The proposed approach: Evolutionary Optimization for Synchronized
Routing Problem (EOSRP)

Evolutionary approaches are widely employed competent meta-
heuristic search methods that can effectively engage with NP-Hard
problems (Fogel, 2000). In line with the evolving understanding of
them as neatly noted by Sorensen et al. (2017), rather than strict algo-
rithmic formulations we interpret metaheuristics as general frameworks
where ideas, concepts and guidelines are offered for tailored combi-
nations. Accordingly, in tackling Multiple Capacitated Mobile Depot
Vehicles Routing Problem (mCMoD-VRP) that is described in Section 3,
we propose an evolutionary approach based on a genetic algorithm
(GA), combined with two local search heuristics (Nearest Neighbor and
Insertion Local Search) and a collaborative hybridization strategy to
effectively cover both exploration and exploitation dimensions.

The initial model of GA — which is often referred to as Canonical
GA (Whitley, 1994; Garcia-Martinez et al., 2018) — has been researched
by Fraser, Bremermann and Holland in 1960s and 1970s (Fraser, 1957;
Bremermann et al., 1962; Holland, 1975) mostly for the purpose of
emulating the phenomenon of biological evolution. Not necessarily the
purpose but the level of success achieved in designing an adaptive sys-
tem and ideas put forth by this model inspired many future variants of
GA that intended to cope with highly complex optimization problems.

In exploring a search space, GAs encode hyperplanes of a hyper-
space into a string structure that is called a chromosome (genotype),
where each variable in the string is represented as a gene within
that chromosome. Then a collection of such strings form a population
that undergo an iterative “selectrocombinative” process during which
chromosomes are decomposed and reassembled by genetic operators.
The objective function of the problem evaluates the fitness of chromo-
somes that determine their survivability at the end of each such cycle.
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Iterative application of this process through the pressure of cooperation
and competition pushes better-fit combinations of genes in chromo-
somes up through generations. A common approach in augmenting
GA is hybridization with local search methods, also called memetic
approaches as coined by Moscato in 1989 (Mascato, 1989).

The method we developed for the mCMoD-VRP problem type is
based on evolutionary genetic and memetic algorithms, that we name
Evolutionary Optimization for Swarm Routing Problem (EOSRP). The
general structure of the EOSRP algorithm is depicted in Fig. 1 and
the details of the genetic, memetic, and repair operators employed are
described in the following sections.

4.1.1. Encoding of a problem and initialization of a population

Genotype of a chromosome is constituted of element sets named
subtours per the number of drones available for a mission and a stack
of idle elements named remaining targets, as depicted for a sample three
drones scenario in Fig. 2. Each subtour represents a target list to be
visited by a drone within the range constraint, and remaining targets
collection holds the targets that do not appear in any of the drones*

visiting lists, due to not fitting within their range capacities as of given
time. The sample encoding of a three-drone problem into a chromo-
some depicted in Fig. 2 demonstrates the EOSRP algorithm’s ability to
operate on drone fleets of varying sizes. Consequently, the examples
throughout this paper will feature different fleet sizes, including three,
four, and five drones.

A phenotype defined by such genotypes is sampled in Fig. 3, this
time for a five-drone scenario. Such chromosomes are generated by
randomly assigning targets to subtours while respecting the range
constraint, up to the determined population parameter. This graphical
notation in Fig. 3 will be used throughout the paper to illustrate all
EOSRP outputs.

4.1.2. Selection

Selection in a GA is crucial not only in elevating the better-fit
chromosomes but also in preserving the genetic diversity within the
population. EOSRP implements fitness proportionate selection. The
selection process is mainly based on the fitness of total target coverage
of the swarm (by the summation of the target counts of all subtours
first, and the summation of the tour lengths then). A smaller portion of
the population (we set to %25 during our tests) is selected by fitness
based on summation of square value of target counts of subtours.
This approach is expected to give a second chance of survival for
individually high performing subtours that reside in a chromosome
whose overall fitness is depressed by the dominance of less optimal
subtours and that may contain valuable genetic parts useful for future
re-combinations. Refer to Fig. 4 the detailed algorithm.

4.1.3. Crossover

Crossover is an essential operator in GA that is expected to bring
better traits of different parent chromosomes together to form offspring
that may out-qualify both parents. The crossover operator in EOSRP
randomly conducts a one-point merge operation between subtours of
two chromosomes, as illustrated in Fig. 5. Crossover points from each

Algorithm Merge Crossover

If (crossover probability)

Parent_1, Parent_2 < Select Random Chromosomes from Population()
Crossover_Points_Pair < find closest swap points (Parent_1, Parent_2)
Offspring_1 & Merge_Parts (Parent_1, Parent_2, Crossover_Points_Pair)
Offspring_2 ¢ Merge_Parts (Parent_2, Parent_1, Crossover_Points_Pair)

Offspring_1.Repair_operations()

Offspring_2.Repair_operations()

Population.Add(Offspring_1)

Population.Add(Offspring_2)
EndIf

Fig. 6. Algorithm of merge crossover operator employed in EOSRP.
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Fig. 8. Snapshot of a merge crossover in EOSRP.

parent chromosome are selected heuristically based on their geograph-
ical distance to one another, in a way to enable them crossover at
where they come closest to each other. Depending on the crossover
point this operator may either merge parts of different subtours or swap
two subtours as a whole. Refer to Fig. 6 the detailed algorithm.

Fig. 7 represents a snapshot of two randomly matched chromosomes
to undergo a crossover operation during a generation of a run of EOSRP
on TSPLIB (Reinelt, 1991) ch130 problem for a five drones scenario.

As apparent in Fig. 8, in the result of this crossover one of the
offsprings out-qualifies the both parents in total target coverage (TC).

4.1.4. Mutation

As mimicking the phenomena of genetic copying errors in biology,
the purpose of the GA mutation is to induce minor deviations in
chromosomes that through generations push random checks of the
vicinity of the candidate solutions in the search space, which may
otherwise get skipped as a consequence of lack of genetic diversity.
As the nature of mCMoD-VRP suggests a rather greater number of
potential combinations, in EOSRP we have implemented a rich set of
mutation methods that include operators both we specifically designed
for this particular problem type and operators that are popularly known
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Fig. 10. Selection of inbreed crossover points and parts of subtours for exchange.

in the GA literature. In each mutation cycle of EOSRP, one of these
operators are picked randomly by their predefined probabilities. Rather
than increasing target coverage, mutation operators in EOSRP aim to
yield transitional forms through itinerary rearrangements that can be
exploited by future operations.

To effectively address the unique challenges of mCMoD-VRP, we
introduce two novel mutation operators: inbreed crossover mutation
and cost-aware swap mutation. In inbreed crossover mutation, from
random sets of targets of two subtours of the same chromosome, a
target couple that is geographically closest to each other are picked as
crossover points where parts of subtours are exchanged at, as illustrated
in the sample in Fig. 9.

Fig. 10 is a snapshot of inbreed crossover mutation operation cap-
tured during a run of EOSRP on TSPLIB ch130 problem for a four
drones scenario and Fig. 11 is the end product of this operation, where
the same number of targets are visited by the swarm with less tour
length. Refer to Fig. 12 for the detailed algorithm.

The other specialized mutation operator, cost-aware swap mutation
picks a random target from the receiving subtour of a chromosome
and finds the least costly target in the sending subtour in relation to
that target and transfers it next to the other. The least costly target
refers to the target from sending subtour that causes least tour length
increase in the receiving subtour when inserted. Fig. 13 is a sample of
such operation taking place during a run of EOSRP on TSPLIB ch130
problem for a five drones scenario. Refer to Fig. 14 for the detailed
algorithm.

Unlike traditional crossover operators that focus on exchanging
fragments between different chromosomes, inbreed crossover mutation
specifically targets the swap of the fragments of subtours of the same
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chromosome based on geographical convenience. This strategy helps
retain the built-up fragments of the routes while seeking for further
exploitation of them through internal recombinations.

The other mutation operators we implemented in GA-CMoD are
displacement, inversion, insertion, and exchange mutations that are
popular in the literature in application of GA on VRP-like problems.
You can refer to Larranaga et al. (1999) for the implementation logic
and details of these operators.

4.1.5. Migration

Migration may not be among the most commonly employed op-
erators in GA, but the excessive size of search space in mCMoDVRP
led us to exploit this method in enriching the genetic diversity within
the population to better escape prematural convergence. Studies of
Cantu-Paz can be referred for migration policies and their effects
in GA in detail (Cantd-Paz, 1998; Cantu-Paz and Goldberg, 2000;
Canti-Paz, 2001). We adopted a multi-culturality oriented migration
policy (Araujo and Merelo, 2010). In EOSRP, based on migration
frequency (f) (set as 100 generations in EOSRP), a migrant deme (set as
25% of the population) is migrated back and forth between a segregated
evolution environment (ie. island) and the main evolution environment
(ie. mainland) as follows: A reduced search space is defined by sampling
of the remaining targets part of the most fit individual at generation f
(see Fig. 15), and migrant deme is initiated in this search space. Migrant
deme evolves for the next f generations for a single drone solution in its
own search space through GA-CMoD. Refer to Fig. 16 for the detailed
algorithm.

Then every other fth generation, two operations take place: first,
the chromosomes in island deme undergo a crossover operation with
chromosomes of the mainland population, as sampled in Fig. 17 (also
observe the effect of repair operations on resulting tours, explained in
Section 4.1.7). This crossover operation deliberately picks subtours in
swarms that have the least target coverage for replacement. Second,
a new migrant deme is generated from the remaining targets of the
most fit chromosome of the current generation, repeating the process
described above. This migration cycle is continued throughout the run
of EOSRP.

4.1.6. Insertion & 2-Opt local search memetics

As genetic algorithms emulate biological evolution, memetic algo-
rithms mimic cultural evolution (Mascato, 1989), which is intrinsically
based on top of genetic foundation. Likewise, the purpose of memetic
operators in a hybrid GA is to seek opportunities for fine tuning of
solutions within their immediate vicinity. EOSRP employs two memetic
operators on the exploitation dimension.

Among various variants of Insertion Local Search heuristic (Hoos
and Stiitzle, 2004), we implemented Nearest Insertion Local Search in
EOSRP. This operator randomly picks a target in one of the subtours
of a chromosome, and finds a target to insert among a random set of
remaining targets that causes the least increase in the tour length of
that subtour when inserted at that locus. Fig. 18 represents a sample of
insertion local search operation that takes place during a run of EOSRP
on TSPLIB ch150 problem for a four drones scenario. In this example,
the algorithm has selected a new unvisited target (dashed red circle)
from the subtour assigned to the drone with the blue route. It then
searches through a random subset of the visited targets and select one
of them (red circle) such that the new unvisited target can be inserted
with the least increase in the drone’s total travel distance.

2-Opt is a popular local search method first proposed by Croes in
1958 (Croes, 1958) that rearranges the order of edges in a graph by
means of exhaustive sequence reversals to reduce tour length. It effec-
tively removes intersections however introduces a heavy computational
load. Therefore in EOSRP we apply 2-Opt only on the subtours of the
most fit chromosome of each generation, and let this memetic learning
spread around in the population naturally through genetic interactions.
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Fig. 11. Chromosome before and after undergoing inbreed crossover mutation.

Algorithm Inbreed Crossover Mutation

If (Inbreed Crossover mutation probability)
Parent < Select Random Chromosome from Population()
SubTour_1, SubTour_2 & Select Random Subtours from Parent()
Crossover_Points_Pair < find closest swap points (SubTour_1, SubTour_2)
Offspring= Merge_Parts (SubTour_1, SubTour_2, Crossover_Points_Pair)
Offspring.Repair_operations()
Population.Add(Offspring)

Endif

Fig. 12. Algorithm of in-breed crossover mutation operator employed in EOSRP.

4.1.7. Repair operators

A repair operator is an algorithm that transfers the candidate solutions
into the search space of the problem when they fall outside of it, as
described by Larranaga et al. (1999).

Since genetic algorithms work in a fashion of recombining build-
ing blocks of candidate solutions, while operating on a permutation
problem they have to take measures to avoid repetition of building
blocks in their delivered products (Whitley and Yoo, 1995). Besides this
condition of non-repetition of targets within a swarm'‘s subtours, in the
case of mCMoD-VRP another condition is confining the tour lengths of
drones within their range capacities.

Satisfaction of these conditions is ensured by means of repair oper-
ators which are typically appended after genetic operators. To ensure
that the generated solutions are valid and adhere to the problem’s
constraints, we employ two specialized repair operators in EOSRP. The
first one handles the cases where the same target appears twice within a
swarm (as a result of being inherited from both parents after a crossover
operation), by keeping the target in the itinerary of the drone where it
adds less tour length compare to that of the other drone, and dropping
the other instance. The second repair operator takes care of range
violation. If the tour length of a drone exceeds its designated UAV range
(as a result of a genetic operation), then among a random subset of its
targets the operator drops the target(s) that adds the most tour length,
iteratively until the constraint is satisfied.

4.1.8. Calculations of takeoff and landing points of drones

In EOSRP, the determination of takeoff and landing points of drones
along the route of the mobile host station is handled as part of the
optimization problem. Takeoff point is determined upon to take the
shortest path to the first target of a subtour, and the landing point
is predicted by calculating the meeting point of the drone and the
carrier. Details of the geometrical calculations used in acquiring both

of these points can be referred to at the Appendix A in our previous
study (Savuran and Karakaya, 2015a).

4.2. A competing algorithm: Serialized GA-CMoD

In order to comparatively evaluate the performance of the proposed
approach, we modified the GA-CMoD algorithm that we had proposed
in an earlier work for single drone based mCMoD-VRP (Capacitated
Mobile Depot Vehicle Routing Problem) to handle multiple drones case,
as described below.

In the CMoD-VRP problem, there is only one drone available during
a mission, and the objective of the GA-CMoD algorithm is to build a
route to maximize the number of targets to be visited employing this
single drone, as sampled in Fig. 19. Further details about the GA-CMoD
algorithm and its performance can be found in Savuran and Karakaya
(2015a).

For adapting the single-drone GA-CMoD algorithm for an mCMoD-
VRP scenario where a swarm of drones are available for tasking in
a mission, we modified its design simply by running the algorithm
repeatedly on the search space per the number of allocated drones, by
inputting the search space that is updated by deduction of the visited
targets in every iteration. The modified version of GA-CMoD is given
in Fig. 20. As this approach serializes single drone solutions to form up
a swarm solution, we name this implementation of GA-CMoD as Serial
GA-CMoD.

The serialization of single drone solutions generated by GA-CMoD
through iterative reduction of search space and the end product deliv-
ered by this process is given in Fig. 21. This figure illustrates how Serial
GA-CMoD works by sequentially finding the best route for each drone,
considering the remaining targets after each iteration. The algorithm
first finds the optimal route for the first drone (blue route), then for
the second drone (red route), and finally for the third drone (green
route). The final solution is then formed by combining these individual
drone routes, as shown in the figure. Each drone’s route is determined
independently, without considering the potential for collaboration or
synchronization with other drones.

5. Simulation results

In evaluating the competence of our proposed EOSRP algorithm,
we observed its performance against the serialized GA-CMoD on mul-
tiple TSP benchmark problems for three, four, and five drones. This
section explains the simulation environment, results of computational
tests with providing quantitative metrics and some generated solution
samples and summarizes the study with a discussion of our findings.
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Fig. 13. Chromosome before and after undergoing cost-aware swap mutation.

Algorithm Cost-aware Swap Mutation

If (Cost-aware Swap Mutation probability)

Parent ¢ Select Random Chromosome from Population()

SubTour_1, SubTour_2 ¢ Select Random Subtours from Parent()

Swap_Points ¢ find cost-based swap points (SubTour_1, SubTour_2)

SubTour_1 ¢ Subtour_1.Rearrange with insertion of SwapPoint_2 at SwapPoint_1.index()
SubTour_2 < SubTour_2.Rearrange with removal of SwapPoint_2()

EndIf

Fig. 14. Algorithm of cost-aware swap mutation operator employed in EOSRP.

Most fit chromosome at g = f

Remaining targets part

Fig. 15. Extraction of remaining targets part from the most fit individual for initiation of a migrant deme.

5.1. Simulation environment

We implemented and evaluated the proposed solution using the
test bed we have designed and coded in C# language using MS Visual
Studio IDE for experimental purposes specifically for this research.

Considering the diversity in size and topology as well as the com-
putational capacity available for the tests, we selected 14 benchmark
problems from TSPLIB as the target topology and each problem was
tested for three, four, and five drones scenarios with range constraints
per drone proportionate to the known optimal tour lengths (KOTL) of
problems (Reinelt, 1991), as given in Table 1. Each such test scenario
was run for 10 times.

Per our purpose of measuring the full solution convergence capabil-
ity of tested algorithms (ie. not seeking faster convergence), we fixed
the parameter sets that stabilize convergence at solution plateau for
long enough as sampled in Fig. 22 and empirically tuned the parameters
as given in Table 3 for EOSRP. The details of our parameter tuning
methodology can be referred to at our preceding study (Savuran and
Karakaya, 2015a).

For fairness, while scaling the generation (G) and population (N)
parameters of EOSRP on serial GA-CMoD implementation, we have
distributed the amounts equally per each drone (for example, berlin52
with 4 drones scenario was run with 600/4 = 150 generations and
800/4 = 200 populations for each drone in serial GA-CMoD).
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Algorithm Migration

searchSpace ¢ All targets defined for the mission
population < initialize population (searchSpace)

g<-0, G&Number of generations to run, freq <Migration Frequency
While (g < G)
If (g.Mod(Freq)=0)

islandPopulation < initialize population (mostFitindividual.RemainingNodes)
EndIf

If (g > Freq)
islandPopulation.Apply_genetic_ops()
EndIf
Population.Apply_genetic_ops()
If (g > Freq) AND ( g.Mod(Freq)=Freq-1))

Do Migration Crossover between population and islandPopulation
EndIf

gég+1
EndWhile

Fig. 16. Algorithm of migration operator employed in EOSRP.

Mainlander Islander
]
} — chromosome

chromosome

TC: 58 TC: 15

Offspring

TC: 65

Fig. 17. Crossover with a migrated chromosome.
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Fig. 18. Insertion local search operation.

Table 2
- - - - Environmental parameter values used in tests.
= Y . o Parameter Value
. S . * $
LI Host station start point (X,Y) (0,0)
* . ¢ Host station heading (Degrees) 135
N S o ¢ d . * Host station speed (Unit) 40
. L . # . Drone speed (Unit) 300
. .
. .
* * .o =
o .
° . Table 3
= J . . : e Population (N), generation (G), crossover (P.), mutation (P;,) and insertion local search
. ,' " (P;;,) probability parameters implemented for each benchmark problem in simulation
L. e * . .'. . "’ tests.
B TN . Problem Id. G N P, P, Py
. . . .
.o d J e \ = berlin52
. LEGEND eil76
. . pr76
., 8 _ kroB100 600 800
. e : Drone take-off instance eil101
- : Mobile host statiton route Li“l%
ier12 12
. : Drone route ferl27 9 0.20 0.05 0.05
. ° : ! ch130
. o e, W = Drone landing point pri44 700
ch150 1600
Fig. 19. A sample GA-CMoD solution. rat195 1000
kroB200
a280 1200
Table 1 ‘ linHP318 1300 2000
Tested benchmark problems and range constraints.
Problem Id. KOTL Range constraints (% of KOTL)
3 drones 4 drones 5 drones
berlin52 7542 25 20 15 5.2. Computational tests
eil76 538 25 20 15
izgloo 2281‘1:139 iz ig ;2 In this section we discuss the performance of the EOSRP through
eil101 629 25 20 15 two types computational tests. First we analyze the performance of
1in105 14379 33 25 20 individual genetic and memetic operators through ablation tests, then
bier127 118282 25 20 15 compare the overall performance of EOSRP against the competing serial
ch130 6110 25 20 15 GA-CMoD algorithm
prld4 58537 33 25 20 ’
ch150 6528 25 20 15
rat195 2323 25 20 15 5.2.1. Individual contributions of operators
kroB200 29437 25 20 15 In order to test the individual contributions of the operators, we
a280 2579 25 20 15 d th f £ EOSRP . . . £ hich
HnHP318 41345 25 20 15 compared the performance o against its variants from whic
the tested operator is removed from. We randomly selected the krob200
5 drones benchmark problem as the test case and conducted the tests
with the same parameters given in Table 2. As given in Fig. 23 we ob-
For researchers interested in reproducing the tests, the environmen- served that all tested operators contributed to the overall performance
tal parameters used are given in Table 2. in various degrees. Especially the introduction of Inbreed Crossover
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Algorithm Serialization of GA-CMoD on mCMoDVRP

dronesAvail ¢ number of drones allocated
searchSpace < All targets defined for the mission
g<0, G&Number of generations to run,
singleSolution, swarmSolution € nil
PROCEDURE GA-CMoD (dronesAvail, searchSpace)
population & initialize population (searchSpace)
While (g < G)
singleSolution
g&g+1
EndWhile
swarmSolution.Add(singleSolution)
dronesAvail ¢ dronesAvail -1
searchSpace € searchSpace — singleSolution.targets
If (dronesAvail>0)&(searchSpace > 0) then
CALL (GA-CMoD(dronesAvail, searchSpace))

Population.Apply _genetic_ops()

EndIf
END PROCEDURE
OUTPUT swarmSolution

Fig. 20. Algorithm of serialization of GA-CMoD.

Fig. 21. Serial implementation of GA-CMoD in forming up a swarm solution.

12
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Average fitness of population

Fig. 22. Sample convergence of a solution for TSPLIB pr144. (f is Fitness measured as the total number of targets visited, and g is generation represented as the number of the

algorithm iterations).

Target Coverage Percentage
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94.4 94.4
90
80
70 63.6
60
w -
40

EOSRP Full EOSRP without
Configuration Mutation

100.0

EOSRP without
Migration

EOSRP without
Insertion Local
Search

EOSRP without 2-
Opt Local Search

Fig. 23. Comparison target coverage of EOSRP variants with different operator
configurations (Read: as the percentage of the target coverage performed by EOSRP
in full configuration).

Mutation and Cost-Aware Swap Mutation significantly contributes to
EOSRP’s performance. These operators, by focusing on geographically
close targets and cost-aware swaps, effectively address the unique
challenges of mCMoD-VRP, leading to improved target coverage and
flight range utilization.

5.2.2. Performance of EOSRP versus serial GA-CMoD

In comparing the performance of our proposed EOSRP algorithm
against serial GA-CMoD on various TSP benchmark problems for three,
four, and five drones scenarios, we employed the following perfor-
mance metrics to compare the two algorithms:

» Target Coverage: This metric measures the total number of targets
visited by the drone swarm during a mission. A higher target
coverage indicates a more efficient solution, as it signifies that
the drones can reach and service a greater number of locations
within their flight range and time constraints.

Flight Range Efficiency: This metric measures the ratio of the total
distance flown by the drones to the total number of targets visited.
A lower flight range efficiency indicates that the drones are using
their flight range more effectively, minimizing unnecessary travel
and maximizing the number of targets visited per unit of flight
distance.

Range Capacity Utilization: This metric measures the percentage
of the allocated flight range that is used by the drones during
a mission. A higher range capacity utilization indicates that the
drones are making better use of their available flight range, min-
imizing wasted flight time and maximizing the overall efficiency
of the drone deployment.

According to the test results, EOSRP outperformed serial GA-CMoD
algorithm consistently without any exception, in all 42 test scenarios.
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Average of Percentages for 3, 4 and 5 Drones Scenarios

-=-EOSRP —=Serial GA-CMoD

berlin52

100

linhp318 eil76
90
a280 pr76
krob200 krob100
rat195 eil101
ch150 lin105

bier127

prl44

ch130

3 Drones Scenario 4 Drones Scenario 5 Drones Scenario

BAGMe,

Fig. 24. Comparison of targets covered by EOSRP and Serial GA-CMoD.

On average, EOSRP covers 8.7% more targets than serial GA-CMoD.
Fig. 24 represents the performance comparisons of both algorithms,
where charts at the bottom demonstrate average values of 10 runs
of each algorithm per each problem for three, four, and five drones
scenarios individually, and the chart at the top is the comparison of
the average of the averages of these three scenario types.

EOSRP achieves this through more efficient and effective use of
flight range capacity allocated for drones. The solutions delivered by
EOSRP are more capacity-efficient in terms of the ratio of capacity
required per target:

Distance Flown

Ef ficiency = —————
17 Y Targets Visited
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Fig. 25. Comparison of distances flown per target visited.

Target Visited per Distance Flown

—Serial GA-CMoD (as % of EOSRP)

berlin52
100

—EOSRP (taken as 100)

linhp318

a280

krob200 krob100

rat195 eil101

ch150 1in105

ch130

Fig. 26. Comparison of targets visited per distance flown.

On average, EOSRP consumes 7.28% less flight capacity than serial
GA-CMoD per each target visited, as demonstrated in Figs. 25 and in 26
as averages of averages of 10 runs for each of the three scenario types.

EOSRP also is more effective as it better utilizes the flight range
capacity:

Distance Flown

E tiv = * 100
S Jectiveness Flight Range Capacity

EOSRP is able to facilitate more effective use of the flight range as it
utilizes 98.1% of the allocated ranges of the drones on average, against
that of 96.9% of serial GA-CMoD. With the topology-specific exception
for the bier127 problem, this is observable in Figs. 27 and 28, where
utilized flight ranges of each problem file are included, as averages of
averages of 10 runs for each of the three scenario types.

Serialized GA-CMoD has also demonstrated that it is fairly compet-
itive in handling this problem type. However, contrary to EOSRP, it
builds routes for individual drones discretely in isolation and lacks the
awareness of capabilities of the other drones that are available for as-
signment during a mission, thus operating in an asynchronous planning
mode. These distinctions are easily observable in the solutions both
algorithms delivered during simulations, some of which are sampled
from Figs. 29 to 33 where the best route plans out of 10 runs delivered
by EOSRP and serial GA-CMoD on a set of problems are compared. One
can clearly observe that how synchronous planning enables the swarm
logic to make effective load sharing and resource utilization through
smart trade-offs and hand-overs of targets across drones to create room
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Fig. 27. Comparison of range capacity utilization rates.
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Fig. 28. Comparison of range capacity utilization rates.

for extending tours of the other drones onto prolific places around the
landscape.

For instance, in Fig. 29, EOSRP is able to extend its target coverage
to the west and south of the map that are not opted by serial GA-CMoD,
whose unawareness of the swarm led it to cover 7.7% fewer targets by
dispatching the first drone (green route) to the central cluster of 73
targets, second drone (red route) to the 65 eastern targets, which are
more dense but at a longer distance, and third (blue route) drone to the
better parts of the remaining targets at center and center-west, totaling
56. These tours have a high rate of overlapping with each other, which
results in less efficient utilization of flight range capacities.

EOSRP generates a collaborative swarm plan thanks to its design by
trading-off eastern targets at further distances with closer ones around
the map, in conjunction with the hand-over of targets among drones
that results in less overlapping of routes, leading to more efficient
concentration. Consequently, EOSRP optes for dispatching the first
drone (green route) to the center-east, second (red route) to the west
and third (blue route) to collect the ignored targets by both of these
at center-north and center-south, while elegantly linking these sectors
by a line of en passant targets. This design results in a more balanced
load sharing among drones by distributing 71, 68, and 71 targets
respectively per each.

A similar distinction of design logic between the routes planned by
the both algorithms is identifiable also in the other samples demon-
strated in Figures from 30 to 33.

Furthermore, apart from the comparison of averages presented
above, we observe that out of ten runs conducted for each test scenario,
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Fig. 29. Comparison of tours delivered by both algorithms for a280 three drones
scenario.

93% of the times, even the worst results delivered by EOSRP have been
better than the best results delivered by serial GA-CMoD. We consider
this performance as an indication of solid superiority.

6. Conclusion

The Capacitated, Mobile Depot - Vehicle Routing Problem (CMoD-
VRP) is a highly complex variant of VRP, with multiplicity, mobility,
and capacity constraints. CMoD-VRP has rapidly growing practical
reflections in various industrial fields. In this study, we proposed a
novel Genetic Algorithm (GA) based solution for CMoD-VRP. Using
GA approach, we proposed the Evolutionary Optimization for Synchro-
nized Routing Protocol (EOSRP) which is a flexible and robust solution
effectively explores and exploits the search space.

1
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Since CMoD-VRP is a highly complex optimization problem with
multiplicity, mobility, and capacity constraints, we develop the EOSRP
solution by implementing novel approaches such as:

» Encoding of the problem into a chromosome structure in which
the design of the building blocks structure donated them two-
dimensional mobility both globally around the solution space and
locally across the route designs of individual drones of a fleet, es-
pecially through crossover and migration operators. The effective-
ness of the novel Merge Crossover, Inbreed Crossover Mutation
and Cost-Aware Swap Mutation operators are particularly evident
in the test results discussed in Section 5.

Controlling the evolution based not only on swarm performance
but also on the preservation of particular building blocks that
possess good genetic traits.

As solutions to this problem type being more prone to deception
as a building block evolved for one pair of take-off and landing
instances and in a certain swarm synchronization would not easily
fit into another environment, escaping deception through the
employment of a wide spectrum of operators in coherence.

By comprehensively comparing its performance against serialized
GA-CMoD algorithm that was originally designed for single drone
problem type and adapted for multiple drone solution through serial
execution logic recursively, we have tested the effectiveness of EOSRP
to eminently satisfactory results.

Serialized GA-CMoD also proved to be a powerful algorithm in
handling this problem type. However, contrary to EOSRP, it lacks the
awareness of the capabilities of the other drones that are available
for employment during the mission. Therefore the distinction between
the performance of these two algorithms is due to synchronous plan-
ning capability of one over the other. This observation indicates that
our primary purpose of proposing an approach that enables effec-
tively synchronized planning of multiple drones for a mission has been
satisfactorily fulfilled.

Future directions to further extend this type of optimization should
include:

+ A similar environment this time with multiple mobile depots
on the move on separate routes. In such a problem major scale
delivery operations with a network of multiple drones and mul-
tiple mobile depots serving a large area with dispersed sectors
can be modeled, where improving operational efficiency with
these constraints are searched. Further complexity introduced
by these constraints poses a serious challenge for evolutionary
meta-heuristic approaches.

A

Fig. 30. Comparison of tours delivered by both algorithms for ch150 three drones scenario.
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Fig. 31. Comparison of tours delivered by both algorithms for linhp318 four drones scenario.
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Fig. 32. Comparison of tours delivered by both algorithms for krob200 five drones

scenario.

Fig. 33. Comparison of tours delivered by both algorithms for krob100 five drones

+ Addition of fleet sizing into decision variables of the problem. scenario.

With the purpose of visiting a given minimum percentage of
targets, optimizing the size of the fleet to be allocated for the . . I

g » OP . g . . . CRediT authorship contribution statement
delivery mission can be aimed. This model addresses the practical

problem of effective overall utilization of drones in inventory.
Addition of route design of the mobile depot as another problem Halil Savuran: Writing - review & editing, Writing - original draft,

variable. In such a scenario mobility of the host station would Visualization, Software, Methodology, Formal analysis, Conceptualiza-
be utilized in favor of the mission efficiency by altering the tion. Murat Karakaya: Writing — review & editing, Writing — original
draft, Supervision, Methodology, Formal analysis, Conceptualization.

assumption that it has other operational purposes.
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