



Abstract—In Wireless Sensor Networks (WSN), timely data

collection is an important requirement for the success of the

applications. On the other hand, sensor nodes have limited

resources, such as battery power and memory capacity which

limits their direct participation to data collection process.

Therefore, to collect sensory data efficiently, well-designed

techniques are to be developed. One of the proposed techniques

is to employ mobile sinks (MS) to decrease the energy

consumption at sensor nodes spent in forwarding data packages.

In this method, MS is scheduled such that it arrive sensor nodes

before their memory gets full and overflows. For a successful

schedule, the crucial information is the travelling time between

sensor nodes in the field. In most cases, it is assumed that the

travelling time is known a priori and remains the same all the

time. However, in reality, due to various reasons, travelling

times can change in course of time and, hence, the planned

schedule may not produce the desired output. In this study, we

propose an improved scheduling method considering

uncertainty in travelling time. Simulation experiments justify

the expected success of the proposed method.

Index Terms—Wireless sensor networks, mobile sinks,

scheduling, data collection, uncertainty.

I. INTRODUCTION

Sensor nodes (SN) in a Wireless Sensor Network (WSN)

collect data from their environment and store these values in

their memory. If WSN employs a mobile sink (MS) to collect

sensory data from SNs, MS visits SNs, collects sensory data,

resets SN’s memory, and transfers the data to a remote center.

Contrary to using a static sink (SS), employing a MS saves

SN’s battery which could have been used in transferring

sensory data to a SS via multi-hop communications.

In order to collect sensory data, MS can be routed

according to a schedule. The schedule should provide timely

data collection since memory capacity of SN is limited. If MS

is scheduled to visit a SN too late, memory of the SN gets

overflow and it is reset. Thus, all the collected data is erased

and lost. To prevent memory overflows or minimize the

number of overflows, MS must be scheduled carefully.

Somasundara et al. propose several heuristics to route MS

by selecting the next SN to visit [1], [2]. In their work, the

next SN is decided according to two important factors: SN

distance from the current MS location and remaining time to

overflow criteria. Their proposed heuristics do not produce a

schedule. Moreover, MS must know remaining overflow

times of all SNs which require continuous information

exchanges with SNs. As a result of this requirement, energy

consumption of these heuristics would be very high which

Manuscript received June 9, 2015; revised December 12, 2015.

M. Karakaya is with the Department of Computer Engineering, Atilim
University, Ankara, Turkey (e-mail: murat.karakata@atilim.edu.tr).

makes these heuristics unpractical. To remedy this, we

develop a novel heuristic, called MSCT, which creates a

schedule for visiting SN such that the SN included in the

schedule can periodically be visited in a time less than the

time a SN memory gets full [3]. Thus, SN in the schedule is

free of memory overflow. In [3], it is showed that MSCT can

produce better results compared to proposed heuristics in [1]

and [2].

In above mentioned studies, it is assumed that the

travelling time between SNs are known a priori and they

remain fixed all the times. However, in reality, MS can

encounter various problems while travelling in the field

which can delay it. For instance, if sensor nodes are deployed

in a remote area, roads can be blocked by fallen trees or rocks

which cause MS deviate from the planned route and get

delayed. Therefore, uncertainty in travelling times should be

considered while planning the MS route and while executing

the schedule.

In this work, MSCT method is improved considering

uncertainty in the travelling time as an important design

parameter. The details of the proposed method, MSCT with

Travelling Time Uncertainty (MSCT/U), are presented in

Section II. The simulation setup and results of the

experiments are provided in Section III followed by the

conclusions.

II. MSCT WITH TRAVELLING TIME UNCERTAINTY

(MSCT/U)

A. Maximum Sensor Coverage Tour (MSCT)

As explained above, MSCT attempts to create a closed tour

which takes less time than the overflow time of a sensor node

[3]. The created tour is repeated by MS continuously. Thus,

all the SNs in this tour are guaranteed to be re-visited before

any of them experiences a memory overflow. To implement

this idea efficiently, MSCT uses the Nearest Neighbor (NN)

heuristic to select the next SN. Instead of using location of

sensor nodes dispersed in a large field, MSCT calculates the

nearest SN according to its beacon signal power. Thus,

MSCT does not need to know all the location information of

the deployed SNs. Moreover, since MSCT constructs a tour

and repetitively executes it, MSCT does not require SN to

broadcast their remaining time to overflow. Thus, MSCT

saves SN’s battery power removing all communication

requirements that is essential for the previously proposed

methods in [1] and [2]. MSCT counts on the success of the

NN heuristic to create a tour which includes maximum

number of SNs. However, NN assumes that the travelling

times between SNs are fixed. As discussed above, in certain

situations, this could be contrary to the facts. Below, how

MSCT is improved to deal with travelling uncertainty is

Mobile Sink Scheduling Method for Wireless Sensor

Networks under Travel Time Uncertainty

Murat Karakaya

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

326doi: 10.18178/jacn.2015.3.4.191

explained.

B. Improving MSCT

MSCT is improved in two phases: while creating the initial

tour, and while repeating the constructed tour.

Creating the initial tour phase: MSCT first calculates the

maximum tour time (MTT) using sensor node’s sensing rate

(SR) and memory capacity (MC) as follows:

 (1)

NN selects nearest node to add the initial tour until the total

travelling times allows returning to the start node. Thus,

initial tour begins from a start node, visits sensor nodes, and

returns to the start node. The total tour time (TTT) must be

less than MTT to prevent any overflow happen at the SNs

included in the tour. However, NN selects a SN according to

expected travel time (ETT). If there is a delay on the road this

assumption fails. If the delay happens during the creation of

the initial tour, TTT may be larger than MTT which means

that all the SNs included in the tour will overflow. To prevent

this, when the initial tour is finalized, MSCT/U checks TTT.

If it is larger than MTT, MSCT/U prunes the last node in the

tour and recalculates the TTT. If, still, TTT is larger,

MSCT/U continues to prune the tour until the expected TTT

is less than MTT. Thus, in the end, we have an initial tour

whose TTT is less MTT, which maintains the expected

function of original MSCT under travelling time uncertainty.

Repeating the constructed tour: In real life, delay may

occur at any time. Therefore, after constructing the initial

route, MSCT/U improves the route as follows. First, if MS

experienced a delay between two consecutive SNs in the

route in the last tour, MSCT/U assumes that the delay can last

for the next tour as well. Therefore, to refrain from the delay,

this part of the route is updated as seen in Fig. 1. If there was

a delay between nodes A and B, MSCT/U searches two

unvisited SNs such that the total expected arrival time (EAT)

from A to C via X and Y will be smaller than the realized

arrival time (RAT) from A to C via B as in Eq. 2.

 (2)

where α is a coefficient and α≥1 to tolerate possible delays

that the new route (A-X-Y-Z) may introduce. If MSCT/U

finds such a node, it replaces the node B with the nodes X and

Y. As a result, the updated tour has one more node to cover

which decreases number of overflows and increases the

amount of collected data.

If MSCT/U does not find such nodes, it attempts to

minimize RTT by swapping B with another node such that

updated tour will take less time as in Fig. 2. In this case, X

must satisfy the condition given Eq. 3.

 (3)

As a result of these improvements, MSCT/U is adaptive to

delays which may occur during the periodic tours. Contrary

to the MSCT method in which tour is static, MSCT/U creates

tours adaptive to delays. In the following section, to observe

the success of the proposed MSCT/U method, simulation

environment and results of experiment tests are provided.

Fig. 1. Improving the created route.

Fig. 2. Shortening the created route.

TABLE I: SIMULATION PARAMETERS

Parameter Default Value Range Note

Topology PR76
 TSP benchmark

file
Simulation

Time

(Memory Capacity /

Sensing Rate) ×20

Warm-up

Period

(Memory Capacity /

Sensing Rate) ×3

Sensing

rate
1B/s

Memory

capacity
32KB

4-32

MS speed 32 Km/h 4-32

α 2
 Tolerance for

possible delay

γ 1000
2000 Total delay

parameter

III. SIMULATION AND EXPERIMENT RESULTS

WSN is simulated using MASON discrete event

multi-agent simulation library [4]. Table I summarizes

important simulation parameters and their default values. In

simulations, network topology is created according TSPLIB

benchmark problem given in [5].

To model the uncertainty in travelling time between SNs

we follow the approach proposed by Bertsimas and Sim in [6].

Uncertainty of the traveling times between nodes is bounded

to vary within intervals. Specifically, the uncertainty

intervals for the travel time tij between sensor nodes SNi and

SNj are expressed with minimum travel time (mintij) and

maximum travel time (maxtij). That is,

mintij ≤ tij ≤ maxtij (4)

Minimum travel time is the time to travel between nodes

without any delay. On the other hand, maximum travel time

is assumed to be double of the minimum travel time. Thus,

without any delay traveling time equals to minimum travel

time. The maximum delay can cause travelling time to be

equal to maximum travel time. Delays are assigned randomly

to travelling times between node pairs according to a delay

ratio () as in Eq. 5. Thus, the maximum amount of delay ()

is limited by the minimum travel time.

 (5)

Thus, travel time is formulated as in Eq. 6.

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

327

 (6)

Moreover, to limit the total amount of uncertainty in the

traveling times, a total delay parameter () is used. That is,

∑ (7)

For the given total delay parameter (), simulation test

scenarios are created as follows. First, Euclidean distances

between the given coordinates in the benchmark file are

calculated, and the minimum traveling times between SNs

are determined according to the given MS speed. Using

random values and given value, traveling times between

randomly selected nodes are set.

Each experiment of simulation is run 76 times by selecting

one of the coordinates in the PR76 benchmark file as the

starting node. The observed overflow numbers and amount of

collected data are averaged. Thus, as performance metrics,

average number of overflows and average amount of data

collected are used.

To compare the success of the MSCT/U method, MSCT is

implemented. Furthermore, to find the possible best results,

we implemented a new method called MSCT/Oracle that

knows the exact delays beforehand. Thus, MSCT/Oracle

produces best possible solution which can be achieved by

MSCT for the given delays on the topology.

Below, the results of experiments are given and discussed.

A. Results for Lower Delay Probability

In these experiments, to observe the effect of a lower delay

probability, total delay parameter () value is set 1000. In the

first experiments, the results are obtained for different SN

memory capacity (see Fig. 3 and Fig. 4). In Fig. 5 and Fig. 6,

the results for different MS speed values are given.

As seen in Fig. 3, MSCT/U is very successful at

minimizing the overflow incidents. As expected,

MSCT/Oracle achieves the minimum overflow numbers for

all the different memory capacities as it knows all the delay

before they occur. Results of MSCT/U are very close to these

optimum values whereas original MSCT is far worse

compared to MSCT/U. For the largest memory capacity

(32KB), all the methods results with no overflow at all,

because MS has abundant time to visit all SNs in the topology.

On contrary, when sensors have very small memory capacity

(4KB), all proposed methods produce maximum number of

overflows due to the fact that MS has very little time to cover

a larger number of SNs. For the intermediate memory

capacity values, methods can show their success.

Fig. 4 displays the amount of data collected for various

memory capacity values. In this figure, it is observed that

MSCT/U can generate results as good as the optimum

method MSCT/Oracle does. As seen in Table II, MSCT/U

can collects more data compared to MSCT due to the fact that

MSCT/U prevents sensor memories from overflows

successfully. For example, when sensor memory capacities

are only 4 KB, MSCT/U collects almost double amount of

data compared to MSCT. Moreover, MSCT/U collects about

the same amount of data as MSCT/Oracle for all memory

levels.

Fig. 5 and Fig. 6 depict the results obtained for various MS

speeds. Fundamentally, these results are in parallel with the

previous expectations. MSCT/U again produces very close

results to the optimum values generated by MSCT/Oracle for

various MS speeds. For instance, as seen in Fig. 6, when

MSCT/U is applied, collected data for various MS speed

values are, on the average, 10% less than the optimum values,

but compared to the original MSCT, up to 80% more.

Fig. 3. Overflow numbers for different memory capacities (γ=1000).

Fig. 4. Amount of collected data for different memory capacities (γ=1000).

Fig. 5. Overflow numbers for different MS speeds (γ=1000).

Fig. 6. Amount of collected data for different MS speeds (γ=1000).

The above observations show that MSCT/U is robust for

changes in important WSN parameters such as sensor

memory capacity and MS speed. In the following tests, the

effect of increased uncertainty and delay on the success of the

proposed method is investigated.

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

328

TABLE II: AMOUNT OF COLLECTED DATA FOR DIFFERENT MEMORY

CAPACITIES (Γ =1000)

Memory (KB) MSCT MSCT/U MSCT/Oracle

4 82.3 161.0 202.1

8 299.5 763.8 766.0

16 418.7 2351.7 2515.8

32 5166.1 5180.9 5183.2

B. Results for Higher Delay Probability

In these set of experiments, total delay parameter () value

is increased to 2000 which means higher amount of delays

and uncertainty exist in the topology. The results of these

experiments are given in Fig. 7 and Fig. 8 for different MS

speeds, and in Fig. 9 and Fig. 10 for different sensor memory

capacities. In these results, MSCT/U generates successful

schedules to deal with higher uncertainty. As MSCT/Oracle

knows all the delays, it generates the optimum solutions.

Compared to MSCT/Oracle, MSCT/U discovers delays and

adapts the tour considerably well. Results show that MSCT/U

can handle increased uncertainty so well that it produces

results very similar to the optimum values. Thus, as seen in

all figures, MSCT/U improves MSCT as expected. Without

the improvements, MSCT performs far worse than the

optimum solution.

Fig. 7. Overflow numbers for different memory capacities (γ=2000).

Fig. 8. Amount of collected data for different memory capacities (γ=2000).

Fig. 9. Overflow numbers for different MS speeds (γ=2000).

Moreover, when all results are compared, it is observed

that change in total delay parameter () value, that is

uncertainty, does not deteriorate the performance of

MSCT/U. These results show the robustness of the proposed

improvements under different levels of uncertainty.

Fig. 10. Amount of collected data for different MS speeds (γ=2000).

IV. CONCLUSION

Uncertainty is inevitable in real life applications. In WSN,

data gathering by mobile sink faces uncertainty in travelling

times between sensor nodes. To deal with uncertainty,

MSCT/U is developed by improving the MSCT method.

Furthermore, to calculate the optimal solution for the given

uncertainty, MSCT/Oracle is implemented. The results show

that MSCT/U generates schedules as good as the optimum

method does. Furthermore, MSCT/U displays its robustness

when tested against different MS speed, sensor memory, and

uncertainty values.

As a future work, we plan to deal with uncertainty in the

collected data together with the travelling time. In addition,

we would like to create a method to schedule more than one

mobile sink.

REFERENCES

[1] A. Somasundara, A. Ramamoorthy, and B. Srivastava, “Mobile

element scheduling for efficient data collection in wireless sensor
networks with dynamic deadlines,” in Proc. International Real-Time

Systems Symposium, 2004.

[2] A. Somasundara, A. Ramamoorthy, and B. Srivastava, “Mobile
element scheduling with dynamic deadlines,” IEEE Transactions on

Mobile Computing, vol. 6, no. 4, pp. 395-410, 2007.

[3] M. Karakaya, “MSCT: An efficient data collection heuristic for
wireless sensor networks with limited sensor memory capacity,” 2015.

[4] S. Luke, C. Revilla, L. Panait, and K. Sullivan, “Mason: A new

multi-agent simulation toolkit,” in Proc. SwarmFest Workshop, 2004.
[5] TSPLIB web site. [Online]. Available:

http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/

[6] D. Bertsimas and M. Sim, “Robust discrete optimization and network
flows,” Mathematical Programming, vol. 98, no. 1-3, pp. 49-71, 2003.

Murat Karakaya received the B.S.E.E. degree in 1991

from the Turkish Military Academy (KHO), Ankara,

Turkey, and the M.S. and Ph.D. degrees in computer
engineering from Bilkent University, Ankara, Turkey in

2000 and 2008, respectively. From 1992 to 2000, he

worked as an engineer at different units in the Turkish
Land Forces (KKK), Ankara, Turkey. From 2000 to

2005, he worked as an instructor and software engineer

at the Turkish Military Academy (KHO), Ankara, Turkey. Then, during
2005 to 2008, he worked as an IT project manager in the North Atlantic

Treaty Organization (NATO) Brussels, Belgium. From 2008 to 2012, he

worked as an instructor and software engineer at the Turkish Military School
of Electronics, Communications and Information Systems (MEBS) and

Turkish Military Academy (KHO), Ankara, Turkey. He joined the Faculty of

Atilim University in 2012 and is currently an Asst. Prof. in the Department of
Computer Engineering, Ankara, Turkey. His research interests are natural

computing, sensor networks, peer-to-peer networks, natural computing,

optimization, and communications protocol design.

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

329

