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Abstract—In Wireless Sensor Networks (WSN), timely data 

collection is an important requirement for the success of the 

applications. On the other hand, sensor nodes have limited 

resources, such as battery power and memory capacity which 

limits their direct participation to data collection process. 

Therefore, to collect sensory data efficiently, well-designed 

techniques are to be developed. One of the proposed techniques 

is to employ mobile sinks (MS) to decrease the energy 

consumption at sensor nodes spent in forwarding data packages. 

In this method, MS is scheduled such that it arrive sensor nodes 

before their memory gets full and overflows. For a successful 

schedule, the crucial information is the travelling time between 

sensor nodes in the field.  In most cases, it is assumed that the 

travelling time is known a priori and remains the same all the 

time. However, in reality, due to various reasons, travelling 

times can change in course of time and, hence, the planned 

schedule may not produce the desired output. In this study, we 

propose an improved scheduling method considering 

uncertainty in travelling time. Simulation experiments justify 

the expected success of the proposed method.  

 
Index Terms—Wireless sensor networks, mobile sinks, 

scheduling, data collection, uncertainty.  

 

I. INTRODUCTION 

Sensor nodes (SN) in a Wireless Sensor Network (WSN) 

collect data from their environment and store these values in 

their memory. If WSN employs a mobile sink (MS) to collect 

sensory data from SNs, MS visits SNs, collects sensory data, 

resets SN’s memory, and transfers the data to a remote center. 

Contrary to using a static sink (SS), employing a MS saves 

SN’s battery which could have been used in transferring 

sensory data to a SS via multi-hop communications.  

In order to collect sensory data, MS can be routed 

according to a schedule. The schedule should provide timely 

data collection since memory capacity of SN is limited. If MS 

is scheduled to visit a SN too late, memory of the SN gets 

overflow and it is reset. Thus, all the collected data is erased 

and lost. To prevent memory overflows or minimize the 

number of overflows, MS must be scheduled carefully. 

Somasundara et al. propose several heuristics to route MS 

by selecting the next SN to visit [1], [2]. In their work, the 

next SN is decided according to two important factors: SN 

distance from the current MS location and remaining time to 

overflow criteria. Their proposed heuristics do not produce a 

schedule. Moreover, MS must know remaining overflow 

times of all SNs which require continuous information 

exchanges with SNs. As a result of this requirement, energy 

consumption of these heuristics would be very high which 
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makes these heuristics unpractical. To remedy this, we 

develop a novel heuristic, called MSCT, which creates a 

schedule for visiting SN such that the SN included in the 

schedule can periodically be visited in a time less than the 

time a SN memory gets full [3]. Thus, SN in the schedule is 

free of memory overflow. In [3], it is showed that MSCT can 

produce better results compared to proposed heuristics in [1] 

and [2].  

In above mentioned studies, it is assumed that the 

travelling time between SNs are known a priori and they 

remain fixed all the times. However, in reality, MS can 

encounter various problems while travelling in the field 

which can delay it. For instance, if sensor nodes are deployed 

in a remote area, roads can be blocked by fallen trees or rocks 

which cause MS deviate from the planned route and get 

delayed. Therefore, uncertainty in travelling times should be 

considered while planning the MS route and while executing 

the schedule. 

In this work, MSCT method is improved considering 

uncertainty in the travelling time as an important design 

parameter. The details of the proposed method, MSCT with 

Travelling Time Uncertainty (MSCT/U), are presented in 

Section II. The simulation setup and results of the 

experiments are provided in Section III followed by the 

conclusions. 

 

II. MSCT WITH TRAVELLING TIME UNCERTAINTY 

(MSCT/U) 

A. Maximum Sensor Coverage Tour (MSCT) 

As explained above, MSCT attempts to create a closed tour 

which takes less time than the overflow time of a sensor node 

[3]. The created tour is repeated by MS continuously. Thus, 

all the SNs in this tour are guaranteed to be re-visited before 

any of them experiences a memory overflow. To implement 

this idea efficiently, MSCT uses the Nearest Neighbor (NN) 

heuristic to select the next SN. Instead of using location of 

sensor nodes dispersed in a large field, MSCT calculates the 

nearest SN according to its beacon signal power. Thus, 

MSCT does not need to know all the location information of 

the deployed SNs. Moreover, since MSCT constructs a tour 

and repetitively executes it, MSCT does not require SN to 

broadcast their remaining time to overflow. Thus, MSCT 

saves SN’s battery power removing all communication 

requirements that is essential for the previously proposed 

methods in [1] and [2]. MSCT counts on the success of the 

NN heuristic to create a tour which includes maximum 

number of SNs. However, NN assumes that the travelling 

times between SNs are fixed. As discussed above, in certain 

situations, this could be contrary to the facts. Below, how 

MSCT is improved to deal with travelling uncertainty is 
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explained.   

B. Improving MSCT 

MSCT is improved in two phases: while creating the initial 

tour, and while repeating the constructed tour.   

Creating the initial tour phase: MSCT first calculates the 

maximum tour time (MTT) using sensor node’s sensing rate 

(SR) and memory capacity (MC) as follows: 

 

    
  

  
                                      (1) 

 

NN selects nearest node to add the initial tour until the total 

travelling times allows returning to the start node. Thus, 

initial tour begins from a start node, visits sensor nodes, and 

returns to the start node. The total tour time (TTT) must be 

less than MTT to prevent any overflow happen at the SNs 

included in the tour. However, NN selects a SN according to 

expected travel time (ETT). If there is a delay on the road this 

assumption fails. If the delay happens during the creation of 

the initial tour, TTT may be larger than MTT which means 

that all the SNs included in the tour will overflow. To prevent 

this, when the initial tour is finalized, MSCT/U checks TTT. 

If it is larger than MTT, MSCT/U prunes the last node in the 

tour and recalculates the TTT. If, still, TTT is larger, 

MSCT/U continues to prune the tour until the expected TTT 

is less than MTT. Thus, in the end, we have an initial tour 

whose TTT is less MTT, which maintains the expected 

function of original MSCT under travelling time uncertainty. 

Repeating the constructed tour: In real life, delay may 

occur at any time. Therefore, after constructing the initial 

route, MSCT/U improves the route as follows. First, if MS 

experienced a delay between two consecutive SNs in the 

route in the last tour, MSCT/U assumes that the delay can last 

for the next tour as well. Therefore, to refrain from the delay, 

this part of the route is updated as seen in Fig. 1. If there was 

a delay between nodes A and B, MSCT/U searches two 

unvisited SNs such that the total expected arrival time (EAT) 

from A to C via X and Y will be smaller than the realized 

arrival time (RAT) from A to C via B as in Eq. 2.  

 

                                          (2) 

 

where α is a coefficient  and α≥1 to tolerate possible delays 

that  the new route (A-X-Y-Z) may introduce. If MSCT/U 

finds such a node, it replaces the node B with the nodes X and 

Y. As a result, the updated tour has one more node to cover 

which decreases number of overflows and increases the 

amount of collected data.  

If MSCT/U does not find such nodes, it attempts to 

minimize RTT by swapping B with another node such that 

updated tour will take less time as in Fig. 2. In this case, X 

must satisfy the condition given Eq. 3. 

 

                                          (3) 

 

As a result of these improvements, MSCT/U is adaptive to 

delays which may occur during the periodic tours. Contrary 

to the MSCT method in which tour is static, MSCT/U creates 

tours adaptive to delays. In the following section, to observe 

the success of the proposed MSCT/U method, simulation 

environment and results of experiment tests are provided. 

 
Fig. 1. Improving the created route. 

 

 
Fig. 2. Shortening the created route. 

 
TABLE I: SIMULATION PARAMETERS 

Parameter Default Value Range Note 

Topology PR76 
 TSP benchmark 

file 
Simulation 

Time 

(Memory Capacity / 

Sensing Rate) ×20 

 
 

Warm-up 

Period 

(Memory Capacity / 

Sensing Rate) ×3 

 
 

Sensing 

rate 
1B/s 

 
 

Memory 

capacity 
32KB 

4-32 
 

MS speed 32 Km/h 4-32  

α 2 
 Tolerance for 

possible delay  

γ 1000 
2000 Total delay 

parameter 

 

III. SIMULATION AND EXPERIMENT RESULTS 

WSN is simulated using MASON discrete event 

multi-agent simulation library [4]. Table I summarizes 

important simulation parameters and their default values.  In 

simulations, network topology is created according TSPLIB 

benchmark problem given in [5].  

To model the uncertainty in travelling time between SNs 

we follow the approach proposed by Bertsimas and Sim in [6]. 

Uncertainty of the traveling times between nodes is bounded 

to vary within intervals. Specifically, the uncertainty 

intervals for the travel time tij between sensor nodes SNi and 

SNj are expressed with minimum travel time (mintij) and 

maximum travel time (maxtij). That is,  

 

mintij ≤ tij ≤ maxtij                                 (4) 

 

Minimum travel time is the time to travel between nodes 

without any delay. On the other hand, maximum travel time 

is assumed to be double of the minimum travel time. Thus, 

without any delay traveling time equals to minimum travel 

time. The maximum delay can cause travelling time to be 

equal to maximum travel time. Delays are assigned randomly 

to travelling times between node pairs according to a delay 

ratio ( ) as in Eq. 5. Thus, the maximum amount of delay ( ) 

is limited by the minimum travel time. 

                                               (5) 

Thus, travel time is formulated as in Eq. 6. 
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                                            (6) 

 

Moreover, to limit the total amount of uncertainty in the 

traveling times, a total delay parameter ( ) is used. That is, 

 

∑                                               (7) 

 

For the given total delay parameter ( ), simulation test 

scenarios are created as follows. First, Euclidean distances 

between the given coordinates in the benchmark file are 

calculated, and the minimum traveling times between SNs 

are determined according to the given MS speed. Using 

random    values and given   value, traveling times between 

randomly selected nodes are set. 

Each experiment of simulation is run 76 times by selecting 

one of the coordinates in the PR76 benchmark file as the 

starting node. The observed overflow numbers and amount of 

collected data are averaged. Thus, as performance metrics, 

average number of overflows and average amount of data 

collected are used. 

To compare the success of the MSCT/U method, MSCT is 

implemented. Furthermore, to find the possible best results, 

we implemented a new method called MSCT/Oracle that 

knows the exact delays beforehand. Thus, MSCT/Oracle 

produces best possible solution which can be achieved by 

MSCT for the given delays on the topology. 

Below, the results of experiments are given and discussed. 

A. Results for Lower Delay Probability 

In these experiments, to observe the effect of a lower delay 

probability, total delay parameter ( ) value is set 1000. In the 

first experiments, the results are obtained for different SN 

memory capacity (see Fig. 3 and Fig. 4). In Fig. 5 and Fig. 6, 

the results for different MS speed values are given. 

As seen in Fig. 3, MSCT/U is very successful at 

minimizing the overflow incidents. As expected, 

MSCT/Oracle achieves the minimum overflow numbers for 

all the different memory capacities as it knows all the delay 

before they occur. Results of MSCT/U are very close to these 

optimum values whereas original MSCT is far worse 

compared to MSCT/U. For the largest memory capacity 

(32KB), all the methods results with no overflow at all, 

because MS has abundant time to visit all SNs in the topology. 

On contrary, when sensors have very small memory capacity 

(4KB), all proposed methods produce maximum number of 

overflows due to the fact that MS has very little time to cover 

a larger number of SNs. For the intermediate memory 

capacity values, methods can show their success.  

Fig. 4 displays the amount of data collected for various 

memory capacity values. In this figure, it is observed that 

MSCT/U can generate results as good as the optimum 

method MSCT/Oracle does. As seen in Table II, MSCT/U 

can collects more data compared to MSCT due to the fact that 

MSCT/U prevents sensor memories from overflows 

successfully. For example, when sensor memory capacities 

are only 4 KB, MSCT/U collects almost double amount of 

data compared to MSCT. Moreover, MSCT/U collects about 

the same amount of data as MSCT/Oracle for all memory 

levels. 

Fig. 5 and Fig. 6 depict the results obtained for various MS 

speeds. Fundamentally, these results are in parallel with the 

previous expectations. MSCT/U again produces very close 

results to the optimum values generated by MSCT/Oracle for 

various MS speeds. For instance, as seen in Fig. 6, when 

MSCT/U is applied, collected data for various MS speed 

values are, on the average, 10% less than the optimum values, 

but compared to the original MSCT, up to 80% more.  
 

 
Fig. 3. Overflow numbers for different memory capacities (γ=1000). 

 

 
Fig. 4. Amount of collected data for different memory capacities (γ=1000). 

 

Fig. 5. Overflow numbers for different MS speeds (γ=1000). 

 

 
Fig. 6. Amount of collected data for different MS speeds (γ=1000). 

 

The above observations show that MSCT/U is robust for 

changes in important WSN parameters such as sensor 

memory capacity and MS speed. In the following tests, the 

effect of increased uncertainty and delay on the success of the 

proposed method is investigated. 
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TABLE II: AMOUNT OF COLLECTED DATA FOR DIFFERENT MEMORY 

CAPACITIES (Γ =1000) 

Memory (KB) MSCT MSCT/U MSCT/Oracle 

4 82.3 161.0 202.1 

8 299.5 763.8 766.0 

16 418.7 2351.7 2515.8 

32 5166.1 5180.9 5183.2 

 

B. Results for Higher Delay Probability 

In these set of experiments, total delay parameter ( ) value 

is increased to 2000 which means higher amount of delays 

and uncertainty exist in the topology. The results of these 

experiments are given in Fig. 7 and Fig. 8 for different MS 

speeds, and in Fig. 9 and Fig. 10 for different sensor memory 

capacities. In these results, MSCT/U generates successful 

schedules to deal with higher uncertainty. As MSCT/Oracle 

knows all the delays, it generates the optimum solutions. 

Compared to MSCT/Oracle, MSCT/U discovers delays and 

adapts the tour considerably well. Results show that MSCT/U 

can handle increased uncertainty so well that it produces 

results very similar to the optimum values. Thus, as seen in 

all figures, MSCT/U improves MSCT as expected. Without 

the improvements, MSCT performs far worse than the 

optimum solution. 
 

 
Fig. 7. Overflow numbers for different memory capacities (γ=2000). 

 

 
Fig. 8. Amount of collected data for different memory capacities (γ=2000). 

 

 
Fig. 9. Overflow numbers for different MS speeds (γ=2000). 

 

Moreover, when all results are compared, it is observed 

that change in total delay parameter (  ) value, that is 

uncertainty, does not deteriorate the performance of 

MSCT/U. These results show the robustness of the proposed 

improvements under different levels of uncertainty. 

 

 
Fig. 10. Amount of collected data for different MS speeds (γ=2000). 

 

IV. CONCLUSION 

Uncertainty is inevitable in real life applications. In WSN, 

data gathering by mobile sink faces uncertainty in travelling 

times between sensor nodes. To deal with uncertainty, 

MSCT/U is developed by improving the MSCT method. 

Furthermore, to calculate the optimal solution for the given 

uncertainty, MSCT/Oracle is implemented. The results show 

that MSCT/U generates schedules as good as the optimum 

method does. Furthermore, MSCT/U displays its robustness 

when tested against different MS speed, sensor memory, and 

uncertainty values. 

As a future work, we plan to deal with uncertainty in the 

collected data together with the travelling time. In addition, 

we would like to create a method to schedule more than one 

mobile sink. 
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