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Abstract—In this paper, we propose a route optimization 

method for a carrier-launched Unmanned Air Vehicle (UAV). 

In a real life use case, the carrier keeps on moving on its own 

route as the UAV executes its own mission of visiting the targets 

dispersed on a geographical area. Due to carrier mobility, 

determining the UAV take-off and land-on locations with a 

route which minimizes the total tour length is a crucial research 

question and a practical challenge. In order to resolve this 

problem, we have designed a solution based on the Genetic 

Algorithm (GA). We have observed the performance of the 

proposed approach on some well-known TSP problems by 

comparing its results against the results of the Nearest Neighbor 

(NN) heuristic. 

 

Index Terms—Carrier-launched unmanned air vehicle, 

genetic algorithm, mobile depot, nearest neighbor heuristic, 

route plan optimization, traveling salesman problem, vehicle 

routing problem.  

 

I. INTRODUCTION 

Since their first appearance in 1920s, the usage of UAVs 

for military and civilian purposes has been keeping on 

expanding [1]. Considering the ongoing acquisition and 

development projects, it is assumed that the utilization of 

carrier platforms to augment the effectiveness of these 

vehicles will gain wider use in the near future [2]-[4]. Due to 

their higher endurance (see Table I), UAVs can be tasked on 

geographically dispersed multiple ground targets. In terms of 

mission effectiveness and efficiency, minimizing the total 

route length covering all the given targets is significant. 
 

TABLE I : ENDURANCE AND RANGE VALUES FOR SOME OF THE UAVS [1] 

UAV Endurance(hr) Range(km) 

Global Hawk 30 22000 

GNAT 40 4818 

A 160 30 4625 

Predator 20 740 

Predator B 24 1500 

Heron 40 3300 

 

As there are many different constraints in real life 

scenarios, there have been various works to resolve the 

routing problems assuming different constraints [5]-[8]. One 

of the scenarios is to deploy UAVs on a mobile platform, e.g. 

aircraft carriers, to exploit the platform mobility. In such 

cases, as the carrier will be on the move while the UAV 
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executes its mission, determination of take-off and land-on 

locations as well as the ordering of targets to be visited by the 

UAV with the constraint of minimizing the total tour length 

requires an effective route design. In this paper, we consider 

this use case and propose a method based on the GA.  

In the following sections of this paper we first introduce 

the related work and the GA & NN methods. Then, we 

present the research problem and the proposed solutions in 

detail. Finally, the simulation tests and their results are 

discussed. 

 

II. RELATED WORK 

The problem mentioned above is related with the 

well-known Vehicle Routing Problem (VRP). The VRP can 

be defined as designing an optimal route from a given depot 

to n number of customers, in a manner that every customer is 

visited once and only once, and the route ends in the starting 

depot [9]. As such, a VRP problem is basically a TSP 

problem and a classic case of combinatorial optimization 

problems. 

There are a wide variety of VRP problems focusing on 

different constraints [5] and many exact and heuristic 

approaches have been proposed to solve them [10], [11]. As 

the solution space of such a problem includes n! different 

combinations, a new customer to be introduced in the 

problem may increase the size of the solution space 

exponentially. Therefore, VRP problems are defined as 

non-deterministic polynomial problems (NP-Hard) [12]. This 

situation makes the problem attractive for the heuristic and 

meta-heuristic methods, such as Tabu Search [13], Ant 

Systems [14], Artificial Bee Colony [15], Particle Swarm 

Optimization [16], Simulated Annealing [17] and Genetic 

 

We have observed that most of the study in the field 

consider static depot in the problem and even though there 

are some studies focusing on problems where multiple depots 

are involved, from the perspective of solution design and 

handling a dynamically position switching depot (UAV 

carrier in this case), the subject problem of this paper 

addresses rather an emerging area of research for the time 

being. 

 

III. GENETIC ALGORITHM 

In the literature, Genetic Algorithm is principally deemed a 

heuristic search method that mimics the nature from the 

perspective of biological evolution. Several researchers 

studied evolution inspired algorithms in 1950s and 1960s, to 

solve specific problems [22]. However, GA is accepted to be 

invented by John Holland in 1960s. The difference of his 
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study from that of others was, that he formally studied the 

phenomenon of adaptation as it occurs in nature and tried to 

develop ways to import the mechanism of adaptation into 

computer systems [23]. He also extensively studied the 

foundational theory of GA as why and how it works [24]. His 

1975 book “Adaptation in Natural and Artificial Systems” 

presents a theoretical framework for adaptation under the GA 

[22], [23].  

A. Implementation 

GA depends on the basic rule of Darwinian Theory of 

Evolution: ―Survival of the Fittest‖ [25], [26]. In practice, 

GA treats a set of possible solutions in the search space as if 

they are a population of individuals, applies crossover 

operation on pairs to produce offsprings, applies mutation 

operation on individuals to preserve genetic diversity, 

calculates the fitness of these individuals by the given 

objective function and uses their fitness values to determine 

which ones to let survive. An optional GA operation is elitism, 

which suggests cloning the most fit individual in every 

generation by-passing the genetic operations into the next 

generation, to make sure potential adverse effects of genetic 

operations do not cause an evolutionary fall back. One cycle 

of this set of operations is called a generation, such cycles are 

repeated until a stop criteria is satisfied [22], [23].  

Fig. 1 represents the terminological connection between 

genealogy and GA. 
 

 
Fig. 1. Representation of terminological connection between genealogy and 

GA. 

 

B. Applying GA on VRP Problems 

Some problems may need an extra process to be made 

suitable for GA operations. Permutation based problems such 

as VRP fall under this type.  

1) Representation of VRP in GA 

Potential solutions of a VRP problem are represented as 

chromosomes in which each of the customer location is 

represented as a gene. The order the genes are placed 

corresponds to the actual order each customer will be visited. 

As a VRP problem is classified as a combinatorial problem, 

the constraint of non-repetitiveness of genes in a 

chromosome is introduced. This dictates the GA operators 

such as crossover and mutation to respect this fact. There are 

studies performed on the problems of such nature.  

2) GA operations suitable for VRP 

As simple GA operations will most probably result in 

mal-formed chromosomes that have repetitive and missing 

genes, a common approach is to attache a repairing operation 

to such operations when such results occur. Larranaga makes 

a comprehensive review of representations and operations of 

GA for TSP [20]. Another study with similar purpose is 

Whitleys’ [27]. A comprehensive list of permutation 

respecting crossover operations is made by Üçoluk [28] 

where he also proposes his own method that avoids the need 

for using a special crossover or mutation operator. Another 

crossover operation proposed by Ahmed promotes the 

advantage of consciously selecting the better genes from 

parents during the crossover [19]. Larranaga explains some 

of the popular crossover and mutation operators and their 

procedures in detail [20].  

3) Objective function of a VRP chromosome 

Fitness value of a VRP chromosome is the total distance to 

be covered while visiting all the customers in the order of 

genes in that chromosome, including the distance between 

the last customer and the starting node (depot). Since the 

objective of a route optimization problem is minimization of 

the tour length, smaller tour lengths mean greater fitness 

values. 

There are two approaches adopted for tour length 

calculation, in one approach a cost matrix is used where all 

the distances between each city is predefined. This is usually 

the case for TSP problems where the distance of two nodes is 

dependent on how the path is laid between them. In the other 

approach, an euclidean distance calculation is performed on 

geographical locations of customers sequantially. Latter one 

is adopted in our study, as it fits well for an air vehicle where 

the shortest path between two nodes is also the shortest 

distance between them. Thus, a basic objective function for a 

VRP chromosome where the tour starts and ends in the same 

depot is the total Tour Length (TL) of the solution string it 

contains, which is acquired by a sequence of euclidean 

distance calculations as given below (1), where x and y 

parameters are the x and y coordinates of a node, l is the 

length of the chromosome and the index 0 holds the location 

of the depot. 

 

𝑇𝐿 =   (𝑥𝑖+1 −  𝑥𝑖  )2  
 

+  (𝑦𝑖+1 −  𝑦𝑖  )2  
 
  𝑙−1

𝑖=0 +

  (𝑥𝑙−1 −  𝑥0  )2  
 
+  (𝑦  𝑙−1 −  𝑦0  )2  

 
              (1) 

 

4) 2-Opt method 

2-Opt is a local search method that was developed by 

Croes [12] to rearrange a route in a way that intersecting 

sub-tours to not to intersect (see Fig. 2) and is widely used on 

TSP based problems [29]. 
 

 
Fig. 2. Representation of a 2-Opt operation on an intersecting sub-tour. 

 

On a solution string (tour) that was provided as input by 

heuristic methods, 2-Opt iteratively reverses one of the two 

adjacent sub tours and if the new fitness is better than the 

original one the tour is rearranged with this order. 

 

IV. IMPLEMENTATION OF NN FOR ROUTE OPTIMIZATION 

FOR A CARRIER LAUNCHED UAV 

Nearest Neighbor (NN) heuristic is one of the earliest 

methods proposed for TSP problems and adopts the principle 

 

T2 
2-Opt 
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of always jumping to the next nearest node until all nodes 

have been visited [30]. It runs fast but producing the optimal 

tour highly depends on the layout of the nodes within the 

problem.  

We have adapted NN for the subject use case to evaluate 

the performance of our proposed GA solution.  

In the implementation of the NN heuristic to the given use 

case, after covering the last node, algorithm calculates the 

landing point and includes it in the tour. 

 

V. IMPLEMENTATION OF GA FOR ROUTE OPTIMIZATION FOR 

A CARRIER LAUNCHED UAV 

A. Graphical Representation of a Solution 

The potential take-off points throughout the carriers’ route 

are defined as steps. These steps should be in such a 

frequency that the distance between two successive steps are 

ignorable in terms of affecting the design of the route to be 

traveled by the UAV. Fig. 3 represents a sample route design 

in this manner. 
 

 
Fig. 3. A sample route design. 

 

B. Genetic Operations 

One cycle of genetic operations is called a generation. 

Stopping criteria to finalize evolution could be a fixed 

number of elapsed generations, reaching a desired fitness 

value or number of generations where no improvement takes 

place.  

A high level flow of our algorithm is given in Fig. 4. 
 

 
Fig. 4. A high level flow chart of the algorithm. 

 

Initialization: After parsing a TSP file into a chromosome, 

the gene order of this chromosome is randomized to generate 

a new chromosome. Geographically closest take-off instance 

to the first gene of this chromosome is assigned as the 

take-off instance of this chromosome. Chromosomes created 

this way are added to the population. New chromosomes are 

kept on generated this way until the given population number 

(N) is reached. 

Selection: Selection operation eliminates the worst half of 

the population and clones the fittest individual for elitism. 

Crossover: Crossover process uses the Partially Mapped 

Crossover (PMX) operator [20] for reproduction of the 

population. This operator, after performing a simple 

two-point crossover between two parents, swaps the 

repetitive genes between siblings according to the mapping 

between exchanged parts (Fig. 5).  
 

 
Fig. 5. PMX crossover. 

 

Mutation: One of the Exchange, Displacement, Insertion 

and Inversion mutations is used randomly, within the given 

mutation probability. 

Elitism: Elitism is applied as explained in para. III.A. 

2-Opt: At the end of the 2-Opt operation, each re-ordered 

chromosome is re-assigned an updated take-off instance, as 

explained in para. V.C. 

C. Calculation of the Take-off Instance 

Since the take-off instance of a tour is a parameter in the 

objective function (See para. V.E), it needs to be assigned 

before the selection operation. Therefore, take-off instances 

are calculated once in initialization and at the end of every 

generation. For this, NN heuristic is employed in a minimal 

dose, in the sense that geographically closest take-off 

instance to the first gene of a chromosome is assigned as its 

take-off instance.  

D. Calculation of the Landing Point 

As the carrier is on the move while the UAV is executing 

its mission of visiting the targets, the route design should 

dynamically include the meeting point of the UAV and the 

carrier, which is actually the landing point of the UAV. On 

the other hand, the location of the landing point keeps 

changing depending on the length of the tour the UAV has to 

cover. To handle this issue, a trigonometric representation is 

utilized as described below. 
 

 
Fig. 6. Trigonometric representation of the carrier and the UAV meeting 

point. 

 

Known: UAV Speed (Vu), Carrier Speed (Vc), Carrier 

Heading (θ) and the current traveled distances of the UAV 

and the carrier. 

Assumption: Both UAV and carrier are assumed to have 

constant speed.  

 

x 

Pm{xm, ym} 

Pc{xc, yc} θ 

y 

Pu{xu, yu} 

α Φ 

β 

β 
γ 
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Unknown: Meeting point of the UAV and the carrier. 

As t0 being the moment the UAV completed the visit of the 

last target and ready to return back to the carrier, Pc , Pu  and 

Pm respectively represent the carrier, UAV and meeting 

points. 

As the meeting point of the UAV and the carrier will be the 

intersection of their axes of movement, Pm can be expressed 

as the solution set of the lines du and dc  as seen in Fig. 6. 

Then from the linear equation of point-slope form:  

 (ym-y0 = m(xm-x0)): 

dc: ym = tan (Φ) . (xm – xc) + yc 

du: ym  = tan (γ) . (xm – xu) + yu 

From triangle properties: 

γ = α + β 

From the linear equation of point-slope form: 

(m = tan (α) = (x-x0) / (y-y0)): 

α = arctan ( (yc-yu) / (xc-xu) )  

From the law of sines (a / sin A = b / sin B = c / sin C): 

β = arcsin ( Vct / Vut ) . sin (θ) 

Finally Pm{xm, ym}, from linear equation system:  

 
𝑡𝑎𝑛 (𝛷) −1
𝑡𝑎𝑛 (𝛾) −1

    
𝑥𝑚

𝑦𝑚
  =  

𝑡𝑎𝑛  𝛷 .  𝑥𝑐 − 𝑦𝑐

𝑡𝑎𝑛  𝛾 . 𝑥𝑢 − 𝑦𝑢
  

And with the inclusion of the distance already covered by 

the carrier at time t0 in the formulation, landing point of the 

UAV is predicted. 

E. Objective Function 

Unlike a generic VRP in which a route ends in where it 

starts off, objective function for a carrier launched UAV must 

calculate take-off and land-on points separately. Therefore, 

as x and y being the x and y coordinates of a node, l being the 

length of a chromosome, i = 0 being the take-off instance of 

the UAV, i = 1 .. l-1 being the nodes to be visitied and i=l 

being the land-on location of the UAV, tour length of a 

chromosome is calculated as in (2).  

 

𝑇𝐿 =   (𝑥𝑖 − 𝑥𝑖+1 )2 
 

+ (𝑦𝑖 − 𝑦𝑖+1 )2 
 

  𝑙−1
𝑖=0             (2) 

 

VI. SIMULATION RESULTS 

We have implemented both GA and NN solutions with C# 

programming language and executed various tests using 

 

   

  

 

   

   

   

   

   

   

 
 

   

  
 

  
 

 

 

    

 
  

  

     

     

     

     

     

     

 

 

 
Fig. 7. Convergence graph for Berlin52. 
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some of the well-known benchmark data files in the TSP 

Library [31]. These problems are listed in Table II.

TABLE II: PROBLEMS TESTED IN SIMULATION

Problem Nodes#

Known 

Optimal Tour 

Length

Berlin52 52 7542

Eil76 76 538

Bier127 127 118282

Ch130 130 6110

Ch150 150 6528

KroB200 200 29437

Note that known optimal tour lengths for these problems 

are set for static depots and solutions form a closed circuit.

Test results for the same problems involving mobile depots

are explained below.

As stated before, the UAV and the Carrier are assumed to 

have constant speeds. Problem parameters used in the 

simulation is given in Table III. 

TABLE III: PROBLEM PARAMETERS

UAV Speed (Units) Carrier Speed (Units)
Number of 

Take-Off Instances

300 40
24

GA parameters used in simulation are given in Table IV.

TABLE IV: GA PARAMETERS

Problem
Population 

Size (N)

Generations 

(G)

Crossover 

Probability 

(Pc)

Mutation 

Probability 

(Pm)

Berlin52 120 50 1.0 0.5

Eil76 120 80 1.0 0.5

Bier127 120 130 1.0 0.5

Ch130 120 130 1.0 0.5

Ch150 120 150 1.0 0.5

KroB200 120 200 1.0 0.5

Since GA is a stochastic method, we have run 30 tests with 

same parameters for each problem. As for NN, because of the 

deterministic nature of this method, we have run the 

algorithm for each of the take-off instances (24 in this case) 

once and selected the best result.

We have observed the success of our GA operations over 

the convergence of the of tour lengths (fitness-f) over the 

generation (g). Convergence graphs of Berlin52 and Bier127 

are illustrated respectively in Fig. 7 and Fig. 8 for sampling.

Note: Tour length values of solution strings are negated in 

representation to reflect fitness values of chromosomes.



  

 
Fig. 8. Convergence graph for Bier127. 

 

Sample route designs produced by both of these methods 

for sample problems of Berlin52 and Bier127 are given in Fig. 

9 to Fig. 12. In these figures, we observe that the routes 

planned by GA are shorter and more effective compare to 

those of NN.  
 

 
T.L.: 7533.01 

Fig. 9. Route design generated by GA for the Berlin52 benchmark file. 

 

 
T.L.: 8774.01 

Fig. 10. Route design generated by NN for the Berlin52 benchmark file. 

 

 
T.L.: 119234.3 

Fig. 11. Route design generated by GA for the Bier127 benchmark file. 

 

Best, average and worst length values of the routes 

generated by the GA are compared to the best results of the 

NN method for six different benchmark problems in Table V. 

We have run each settings of the simulation 30 times and 

presented the mean values in Table V. 
 

 
T.L.: 151489.71 

Fig. 12. Route design generated by NN for the Bier127 benchmark file. 

 

TABLE V: COMPARISON OF TOUR LENGTHS GENERATED BY GA AND NN 

Problem GA(Average) NN 

Berlin52 7815.635975 8774.01 

Eil76 595.8412477 655.09 

Bier127 125322.0481 151489.71 

Ch130 6672.368576 7344.68 

Ch150 7288.101526 7645.36 

KroB200 32918.41938 39984.14 

 

 
Fig. 13. Comparison of tour lengths for solutions generated by GA and NN. 

 

Graphical visualization of these results is given in Fig. 13. 

Because the problems have different scales of distances, 

comparison metric is selected as the percentage of the GA 

results over the NN results. 

As seen in Fig. 13, for the entire benchmark files we tested 

the GA method manages to create shorter routes compared to 

the results of the NN method. As the benchmark problem 

sizes and topologies are different, one can argue that the GA 

method is robust against these important parameter changes. 

The GA method can save up to 18% of the route length that 

the NN method generates. This saving is crucial for the 

operational usage and maintenance of UAVs and operators.  
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VII. CONCLUSION 

In this paper we have developed a GA based solution for 

route plan optimization for a UAV launched from a moving 

carrier. One of the main aspects of our study is dynamically 

including the take-off and land-on points of the UAV in the 

objective function and reflecting their effects in fitness 

calculation this way.  

We then compared the results of our proposed method 

against the results of the NN heuristic. The test results 

showed that the GA approach outperformed the NN method 

by generating shorter tours with the average of %88.5. 

In line with the practical trend, our intention for the future 

is to extend this study to handle similar problems where 

multiple UAVs are available for mission and focus on 

maximum target coverage where endurance constraint is 

involved. 
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