
  

 

Abstract—Using Unmanned Aerial Vehicles (UAVs) for 

reconnaissance purposes requires considering many different 

criteria such as limited UAV flight range, specified target 

service time, etc. Furthermore, it is desired that UAV should 

service more targets as many as possible. Thus, route planning 

is required to be optimal to cover maximum number of the 

targets while respecting all the given constraints. This article 

proposes a genetic algorithm (GA) to creating an optimized 

route for visiting maximum number of targets under the flight 

range and target service time constraints. In order to evaluate 

the success of the proposed GA method, we also developed an 

alternative approach, based on the Nearest Neighbor (NN) 

heuristic. To compare the success of these two methods we 

executed extensive simulation tests. The results indicate the 

success of the proposed GA method by increasing the number of 

covered targets compared to the solution based on the NN 

heuristic. 

 

Index Terms—Unmanned aerial vehicles (UAVs), routing, 

target coverage, genetic algorithm, optimization.  

 

I. INTRODUCTION 

The popularity of employing Unmanned Aerial Vehicles 

(UAVs) in military and civil business is growing [1], [2]. One 

of the important challenges stemmed from the requirement of 

efficient usage of UAVs is scheduling the flight routes such 

that UAV can observe all or the maximum number of the 

specified targets. This problem is related with the Travelling 

Salesman Problem (TSP) [3] and the Vehicle Routing 

Problem (VRP) [4]. There are several other versions of these 

base problems including different constraints (service time, 

number of depots, vehicle range, vehicle capacity, etc.). 

Service time constraint defines when UAV can visit a target 

by setting the earliest (ready) and latest (due) visit times. 

Mobile element (in our case UAV) must be over the targets 

during the specified service time. Vehicle range can be the 

duration or the total length of a complete tour that the Mobile 

element (in our case UAV) can travel (fly) at most. 

In the context of well-studied TSP and VRP problems, a 

typical requirement is that mobile element (travelling 

salesman or vehicle) should visit all the targets with an 

optimized (a minimum-distant) route. Moreover, in general, 

it is mostly assumed that there exists enough number of 

mobile elements (travelling salesmen or vehicles) to cover all 
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the given locations. Due to the UAV flight range and the 

target service time, in real-life scenarios, there might not be 

feasible route to cover all the targets, especially if the number 

of UAVs is limited. Consequently, increasing the number of 

targets covered by the UAVs under the given constraints 

characterizes a new problem. For the problem considering 

only the flight range constraint, we have proposed an 

optimization method based on the Ant Colony Optimization 

[5]. However, adding the target service time constraint 

increases the complexity of the problem. Thus, this article 

describes a novel solution for this realistic optimization 

problem by adapting the Genetic Algorithm (GA) 

accordingly.   

In the context of proposed GA method, each possible route 

is defined as an individual for the given UAV respecting the 

constraints. To create new generation, we apply crossover 

and mutation operations on the initial population. After each 

generation, the solution which covers more targets with less 

route distance is selected as the generation-best solution. 

According to the termination condition, the algorithm stops 

and outputs the best route found so far as the result. To 

evaluate the success of the proposed method, another 

approach, based on the Nearest Neighbor (NN) heuristic, is 

designed as well. In this solution, an UAV selects the nearest 

target to move on until its remaining flight range urges the 

UAV to return the base. 

We implemented both solutions using Java and compared 

them in numerous experiment tests with different parameter 

settings and various VRPTW benchmark problem data files 

[6]. The success of the proposed GA method is observed in 

the results by increasing the number of covered targets up to 

25% compared to the solution based on the NN heuristic.  

 

II. PROBLEM DEFINITION 

It is assumed that the coordinates of all targets, the service 

time of each target, and flight range of the UAV are given. 

The service time is defined as the time window in which the 

UAV must visit a target. That is, the UAV must service to the 

target after the ready time and before the due time. 

Furthermore, we assume that the UAV takes off and lands on 

the same base which is stationary. Additionally, the UAV 

flight speed is fixed. The problem is to generate route for the 

given UAV such that any target is visited in the requested 

service time, the UAV’s total route distance has to be equal or 

less than the specified flight range, and the number of total 

targets planned to be visited by the all UAVs is maximized. 

Thus the target function is to maximize the number of targets 

to be visited by the UAV respecting the given service time 

and flight range constraints. In this work we call this problem 

as Maximum Target Coverage Problem (MTCP).  
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In order to monitor the targets within the given service 

times, the UAV may have to wait for some time before 

visiting the next target to respect the ready time. This time 

period is termed as lapse time. The UAV can spend the lapse 

time flying over an extended route to the target or it can 

return and land on the base. Returning base for passing the 

lapse time might help to save fuel and flight range.  Therefore, 

any route planning algorithm should take care of how to 

handle the lapse time effectively. 

 

III. GENETIC ALGORITHM 

Genetic Algorithms (GAs) are defined as search 

procedures based on the mechanics of natural selection and 

genetics – at least in some qualitative sort of way [7].  Thus, 

GA is an Evolutionary Algorithm (EA) which is an iterative 

and stochastic method that works on a set of individuals 

(population) [8]. The objective of Genetic Algorithm is to 

develop method and theory to allow the design of GAs that 

solves hard problems quickly, reliably and accurately [7]-[9].  

In order to apply a genetic algorithm to a problem first 

every potential solution of the given problem is represented 

by an individual. That is, the solution is encoded as an 

artificial chromosome or chromosomes. The basic idea is to 

maintain a population of chromosomes, which represent 

candidate solutions to the target problem that evolve over 

time through a process of mating to merge two solution 

chromosomes to produce a new solution. This solution is 

attained via an encoding/decoding system. The initial 

population (a set of potential solutions) is arbitrarily 

generated or by using a building heuristic. A fitness function 

is employed to measure the goodness of each individual in 

the population with regard to the problem at hand. Thus, the 

GA uses quantitative information for guiding the search 

process. 

GA makes use of selection, crossover and mutation 

operators. Each chromosome in the population is calculated 

an associated fitness value to choose competitive 

chromosomes that will form the next generation. After 

applying crossover operator on the individuals, GA produces 

a new population. Mutation operation is employed to ensure 

that a better (possibly optimal) solution not existing in the 

chromosome pool can also be randomly generated. Thus, GA 

carries on by creating successive generations of better and 

better individuals by applying these simple operations. Thus, 

finding an optimal solution will be guaranteed if the GA 

algorithm is run for a very long time to create new 

generations [9]. 

 

IV. ADAPTING GENETIC ALGORITHM TO MAXIMUM TARGET 

COVERAGE PROBLEM 

Below, we explain how the GA is modified to generate a 

solution to the maximum target cover problem. Since we 

improved GA Algorithm for the UAV routing problem 

having a time windows (VRPTW), we call it as Improved GA 

(IGA) and the algorithm will be used with the name of IGA 

throughout this work. 

IGA is believed to achieve two goals at the same time. First 

one is to maximize the number of targets in the route and the 

second one is to minimize the route travelled. The important 

GA parameter values are given at Table I. 
 

TABLE I: PARAMETER VALUES FOR GENETIC ALGORITHM 

Parameter Value 

Generation Number 200 

Initial Pool Size 100 

Mating Population 50 

Crossover type Truncate, 1-point 

Crossover Ratio 0.6 (60%) 

Mutation ratio 0.01 (1%) 

 

A. Fitness Value 

Fitness value of IGA is the number of targets visited by the 

given chromosome. If two or more chromosomes have the 

same target number, we choose the one with the smallest 

route length. The chromosome with the Highest Fitness 

Value (HFV) is recorded throughout the generations. After 

the pre-determined number of generations is processed, the 

algorithm terminates by outputting the solution (chromosome) 

with the HFV.  

B. Validation 

Validation is used to check if the given chromosome is 

valid according to the given constraints. First of all, targets 

should be listed in the chromosome only once. If there is any 

target duplication, we keep the first appearance of this target 

in the chromosome but remove all the others. Secondly, we 

check if the route length is less than or equal to the given 

flight range. If it is longer, then we split chromosome and 

remove the extra targets such that the new chromosome 

respects the flight range. Lastly, we check if the visit time of 

each target is valid according to the given service time. If not, 

we remove that target from the chromosome. Lastly, we 

update all the visit times of the targets in the validated 

chromosome accordingly. 

C. Creating Initial Population 

Initial population is created randomly selecting the targets 

by obeying the constraints. Then, each chromosome is 

validated as explained above and sorted due to fitness value. 

Our chromosome structure is shown in Fig. 1. 
 

  
Fig. 1. The proposed chromosome structure. 

 

Any gene has a visited Target ID and the visit time of that 

target. The visit time to the target also includes the delay 

times in order to control and obey the specified ready and due 

times.  

D. Crossover  

The most important point for the proposed Crossover 

operator is that we might possibly cross two different sized 

chromosomes. The main goal of Crossover operation which 

is described in Fig. 2 is to reach more nodes in a possible 

shorter path.  

Assume that Parent 1 (P1) and Parent 2 (P2) are the two 

chromosomes (possible solutions). P1 contains 6 genes while 
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P2 has 7 genes as shown Fig. 2. Each gene has the same 

structure described in Fig. 1. For example, 1st gene of P1 is 

“T23” is standing for Target-23 and “1” is standing for Visit 

Time is minute “1” in time. We use maximum travelling time 

3 hours which means 180 min. in the experiments.  Because 

of that reason last gene of any chromosome must be smaller 

than 180 in this example. 

Due to service time and visiting the targets only once 

constraints, we opt to implement 1-point crossover. In order 

to achieve the crossover operation, we first decide and find 

the cut point in the chromosome due to crossover ratio in P1. 

After deciding the cut point and specify the target at that gene, 

then, we check whether that target exists in P2 as well. If it is 

found, crossover is executed as described in Fig. 1. However, 

if not, we have to pick the adjacent nodes in P1 and check 

whether they exist in P2. If we cannot find a common target 

node in P1 and P2, then crossover cannot be executed for this 

pair of chromosomes and we select another pair of 

chromosomes. 

After creating Offspring1 as shown in Fig. 2, it is 

re-evaluated again. Thus we look for a better solution and this 

solution might possibly have either more nodes in the path 

and/or a shorter path. This search is totally made due to the 

nature of GA. Here, IGA is believed to show its power, which 

means that while we are increasing the number of nodes to a 

possible extent; we are also trying to decrease the possible 

delays in the last 3-gene block of P2 at the same time. The 

resulting chromosome (Offspring1) most probably seems to 

have a shorter the path with decreased visiting times to the 

nodes come from P2. 

It has also been mentioned that crossover operation in IGA 

has possibility to have offspring with more genes/targets than 

P1 or P2 as seen in Fig. 2. Besides crossover operation, 

looking for a path having more nodes is a lot more concern 

for mutation as well.   
 

 
Fig. 2. The proposed crossover operator. 

 

Offspring2 is created in the same way as Offspring1. We 

produce it by exchanging the rest of P1 and P2 with each 

other after creating the Offspring1.  

E. Mutation  

Mutation operator in IGA has two main functionalities 

mainly. One of them is to work similarly due to mutation 

ratio as in a common GA [7], [8]. Briefly, two genes are 

picked randomly in the chromosome, then exchanged and 

swapped to each other’s place in order to look for whole 

search space.  

The other functionality of the IGA’s mutation operator is 

believed to be more important. Here we look for a new node 

and try to add one more node/gene to chromosome due to 

ready/due time limitations of the nodes. If possible, then the 

selected new node is put into a place among the other genes. 

This node is placed in the sequence where ready/due times of 

any node are not violated. Finally, if IGA decides to make a 

mutation, it will either make a swap of two genes or add a 

new node into the chromosome.  The more genes with a 

shorter path are the better solution is. After any mutation 

operations, the new chromosome is validated. 

 

V. NEAREST NEIGHBOR HEURISTIC TO MAXIMUM TARGET 

COVERAGE PROBLEM 

To observe the success and effectiveness of the proposed 

GA, we have executed various simulation tests. First of all, 

we have implemented an advisory solution based on Nearest 

Neighborhood (NN) heuristic.  

In the NN method, route planning contains new target 

selection process which begins from the base time as the 

current location. The NN method calculates the UAV travel 

time from the current location to all non-visited targets. Then, 

the NN method eliminates the targets whose ready and due 

times do not fit to the UAV’s arrival time to that node. As the 

final step, the NN method selects the nearest target to the 

current location, provided that the UAV can have enough 

remaining flight range to return to the base.  

If any new node cannot be selected, then target selection 

process terminates and the route plan is outputted. The aim is 

to reach and service the nearest node within the appropriate 

ready/due times. 

But during our experiments, it has been observed that the 

NN algorithm might produce inferior results. For example, if 

the nearest node selected has a rather late ready time than the 

current time, then you have to give delays inevitably and 

these wasted times in air degrades the performance badly 

especially when special data sets are considered. In order to 

get rid of this drawback, we improve the NN method and 

proposed Smart NN (SNN) Algorithm which tries to get rid of 

this drawback.  

In SNN, rather than selecting the single nearest one, a set of 

nearest nodes (in our experiments 3 nodes) to the current one 

is selected. Then, the node causing the least delay is picked 

up within that set. The critical point is that selected node 

might not be the nearest, but very close to it. 

In fact, this is a trade-off between time and distance and it 

is believed to be a good sample of greedy approach. We may 

not select the nearest node for the sake of having less delay in 

the air. We may select the second or third closest node at 

most, but it has been observed in our experiments that we are 

able to visit more nodes by giving less delay time which 

causes a precise performance increase.  

 

VI. SIMULATION TESTS AND RESULTS 

In experimental results, IGA and SNN algorithms are 

compared due to different various VRPTW benchmark 

problem data files [6] with changing UAV ranges and 

parameters. 

A. Simulation Environment and Parameters  

All the test results given in the following tables and figures 

are obtained by taking the mean of the results of 20 

independent runs. We have used both R and C data sets 
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described in [6] in order to reach more accurate results. In C 

data set, all of the nodes are specifically placed on the map 

which is an advantage for SNN algorithm. But it is better to 

show that our GA is almost better than SNN algorithm. In our 

tests, R101 thru R104 among R data sets are used, similarly 

C101 thru C104 are used among the C data sets. The 

parameters are shown in Table II. All of the (100%) nodes 

have been considered and contained in our tests. 

For the UAV parameter values, we consider the MQ-1B 

Predator UAV [10]. The brief technical specs are 130 and 

160 km/h are average speeds and we assume that the vehicle 

will fly for 3 and 6 hours respectively. The data sets, i.e. R 

and C data sets have been experimented due to two different 

speed/range occasions which explained below; 

1) 1st (Low) speed/range: 130 km/h × 3 h= 390 km. 

2) 2nd (High) speed/range: 165 km/h × 6 h= 990 km. 

 

   

 
 

  

  
  

 
  

 

 
  

 

 

B. Experiments and Results 

In the first set of experiments, we observe the success of 

two methods on the R data sets given in the VRPWT 

benchmark problems [6]. The R data sets are good 

approximations for real life applications and first four data 

sets are used since they are good samples for the rest, if 

observed in detail. As seen in the Fig. 3 and Fig. 4, the IGA 

method produces better results than those of SNN for both 

speed/range alternatives. 
 

 
Fig. 3. Comparison of R data sets for 1st speed/range alternative. 

 

 
Fig. 4. Comparison of R data sets for 2nd speed/range alternative. 

In the second set of experiments, we observe the results of 

two methods on the C data sets. The C data sets are different 

than the R data sets. Although there are 101 nodes, all the 

nodes are observed to be clustered in 5-10 nodes. As the SNN 

method tends to traverse first through all possible nodes in a 

cluster and then pass to next cluster, the clustered node 

topology seems to provide advantage for the SNN method. 

However, considering the IGA method, since initial 

population (solutions) is randomly produced at the beginning 

and these solutions might contain nodes form different 

clusters, the convergence of the IGA method might take a 

while. On the other hand, as these clusters are specifically 

designed for creating the C data sets, one can argue that this 

in fact might be contrary to real life cases. 

Even though this characteristic of the C data sets, as Fig. 5 

and Fig. 6 indicate, IGA produces better results when 

compared to SNN from 5% to 50%. IGA tries to maximize 

the node number while trying to minimize the path. 
 

 
Fig. 5. Comparison of C data sets for1st speed/range alternative. 

 

 
Fig. 6. Comparison of C data sets for 2nd speed/range alternative. 

 

VII. CONCLUSION 

The proposed IGA method is proved to be a useful routing 

algorithm in a complex environment with flight range and 

service time constraints. We observed via simulation tests 

that the IGA method is able to increase the number of visited 

targets successfully compared to the SNN method. Thus, we 

believe that the crossover and mutation operators are adapted 

and integrated to the proposed method successfully to 

produce a good solution to the MTCP. 

We would like to develop the IGA method such that it can 

plan routes for the multiple UAVs as a future work. We also 

aim to improve the SNN method for small and clustered 

target layouts.  
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